| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco2el | Structured version Visualization version GIF version | ||
| Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| fuco2el | ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelxp 5703 | . 2 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) | |
| 2 | df-br 5126 | . . 3 ⊢ (𝐾𝑆𝐿 ↔ 〈𝐾, 𝐿〉 ∈ 𝑆) | |
| 3 | df-br 5126 | . . 3 ⊢ (𝐹𝑅𝐺 ↔ 〈𝐹, 𝐺〉 ∈ 𝑅) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) | 
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 〈cop 4614 class class class wbr 5125 × cxp 5665 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 | 
| This theorem is referenced by: fuco2eld 48968 fuco2eld3 48970 | 
| Copyright terms: Public domain | W3C validator |