![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco2el | Structured version Visualization version GIF version |
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.) |
Ref | Expression |
---|---|
fuco2el | ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5729 | . 2 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) | |
2 | df-br 5152 | . . 3 ⊢ (𝐾𝑆𝐿 ↔ 〈𝐾, 𝐿〉 ∈ 𝑆) | |
3 | df-br 5152 | . . 3 ⊢ (𝐹𝑅𝐺 ↔ 〈𝐹, 𝐺〉 ∈ 𝑅) | |
4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) |
5 | 1, 4 | bitr4i 278 | 1 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 〈cop 4640 class class class wbr 5151 × cxp 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 |
This theorem is referenced by: fuco2eld 48882 fuco2eld3 48884 |
Copyright terms: Public domain | W3C validator |