| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco2el | Structured version Visualization version GIF version | ||
| Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco2el | ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5682 | . 2 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) | |
| 2 | df-br 5116 | . . 3 ⊢ (𝐾𝑆𝐿 ↔ 〈𝐾, 𝐿〉 ∈ 𝑆) | |
| 3 | df-br 5116 | . . 3 ⊢ (𝐹𝑅𝐺 ↔ 〈𝐹, 𝐺〉 ∈ 𝑅) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4603 class class class wbr 5115 × cxp 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 |
| This theorem is referenced by: fuco2eld 49208 fuco2eld3 49210 |
| Copyright terms: Public domain | W3C validator |