| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco2el | Structured version Visualization version GIF version | ||
| Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco2el | ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5655 | . 2 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) | |
| 2 | df-br 5094 | . . 3 ⊢ (𝐾𝑆𝐿 ↔ 〈𝐾, 𝐿〉 ∈ 𝑆) | |
| 3 | df-br 5094 | . . 3 ⊢ (𝐹𝑅𝐺 ↔ 〈𝐹, 𝐺〉 ∈ 𝑅) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺) ↔ (〈𝐾, 𝐿〉 ∈ 𝑆 ∧ 〈𝐹, 𝐺〉 ∈ 𝑅)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉 ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿 ∧ 𝐹𝑅𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: fuco2eld 49438 fuco2eld3 49440 |
| Copyright terms: Public domain | W3C validator |