| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco2eld3 | Structured version Visualization version GIF version | ||
| Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| fuco2eld.w | ⊢ (𝜑 → 𝑊 = (𝑆 × 𝑅)) |
| fuco2eld2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| fuco2eld2.s | ⊢ Rel 𝑆 |
| fuco2eld2.r | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| fuco2eld3 | ⊢ (𝜑 → ((1st ‘(1st ‘𝑈))𝑆(2nd ‘(1st ‘𝑈)) ∧ (1st ‘(2nd ‘𝑈))𝑅(2nd ‘(2nd ‘𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco2eld2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 2 | fuco2eld.w | . . . 4 ⊢ (𝜑 → 𝑊 = (𝑆 × 𝑅)) | |
| 3 | fuco2eld2.s | . . . 4 ⊢ Rel 𝑆 | |
| 4 | fuco2eld2.r | . . . 4 ⊢ Rel 𝑅 | |
| 5 | 2, 1, 3, 4 | fuco2eld2 48969 | . . 3 ⊢ (𝜑 → 𝑈 = 〈〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉, 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉〉) |
| 6 | 1, 5, 2 | 3eltr3d 2847 | . 2 ⊢ (𝜑 → 〈〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉, 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉〉 ∈ (𝑆 × 𝑅)) |
| 7 | fuco2el 48967 | . 2 ⊢ (〈〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉, 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉〉 ∈ (𝑆 × 𝑅) ↔ ((1st ‘(1st ‘𝑈))𝑆(2nd ‘(1st ‘𝑈)) ∧ (1st ‘(2nd ‘𝑈))𝑅(2nd ‘(2nd ‘𝑈)))) | |
| 8 | 6, 7 | sylib 218 | 1 ⊢ (𝜑 → ((1st ‘(1st ‘𝑈))𝑆(2nd ‘(1st ‘𝑈)) ∧ (1st ‘(2nd ‘𝑈))𝑅(2nd ‘(2nd ‘𝑈)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4614 class class class wbr 5125 × cxp 5665 Rel wrel 5672 ‘cfv 6542 1st c1st 7995 2nd c2nd 7996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fv 6550 df-1st 7997 df-2nd 7998 |
| This theorem is referenced by: fucof21 49002 |
| Copyright terms: Public domain | W3C validator |