Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco2eld3 Structured version   Visualization version   GIF version

Theorem fuco2eld3 48884
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco2eld.w (𝜑𝑊 = (𝑆 × 𝑅))
fuco2eld2.u (𝜑𝑈𝑊)
fuco2eld2.s Rel 𝑆
fuco2eld2.r Rel 𝑅
Assertion
Ref Expression
fuco2eld3 (𝜑 → ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))

Proof of Theorem fuco2eld3
StepHypRef Expression
1 fuco2eld2.u . . 3 (𝜑𝑈𝑊)
2 fuco2eld.w . . . 4 (𝜑𝑊 = (𝑆 × 𝑅))
3 fuco2eld2.s . . . 4 Rel 𝑆
4 fuco2eld2.r . . . 4 Rel 𝑅
52, 1, 3, 4fuco2eld2 48883 . . 3 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
61, 5, 23eltr3d 2855 . 2 (𝜑 → ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ (𝑆 × 𝑅))
7 fuco2el 48881 . 2 (⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ (𝑆 × 𝑅) ↔ ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))
86, 7sylib 218 1 (𝜑 → ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4640   class class class wbr 5151   × cxp 5691  Rel wrel 5698  cfv 6569  1st c1st 8020  2nd c2nd 8021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-iota 6522  df-fun 6571  df-fv 6577  df-1st 8022  df-2nd 8023
This theorem is referenced by:  fucof21  48914
  Copyright terms: Public domain W3C validator