Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco2eld3 Structured version   Visualization version   GIF version

Theorem fuco2eld3 49440
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco2eld.w (𝜑𝑊 = (𝑆 × 𝑅))
fuco2eld2.u (𝜑𝑈𝑊)
fuco2eld2.s Rel 𝑆
fuco2eld2.r Rel 𝑅
Assertion
Ref Expression
fuco2eld3 (𝜑 → ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))

Proof of Theorem fuco2eld3
StepHypRef Expression
1 fuco2eld2.u . . 3 (𝜑𝑈𝑊)
2 fuco2eld.w . . . 4 (𝜑𝑊 = (𝑆 × 𝑅))
3 fuco2eld2.s . . . 4 Rel 𝑆
4 fuco2eld2.r . . . 4 Rel 𝑅
52, 1, 3, 4fuco2eld2 49439 . . 3 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
61, 5, 23eltr3d 2847 . 2 (𝜑 → ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ (𝑆 × 𝑅))
7 fuco2el 49437 . 2 (⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ (𝑆 × 𝑅) ↔ ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))
86, 7sylib 218 1 (𝜑 → ((1st ‘(1st𝑈))𝑆(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))𝑅(2nd ‘(2nd𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4581   class class class wbr 5093   × cxp 5617  Rel wrel 5624  cfv 6486  1st c1st 7925  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7927  df-2nd 7928
This theorem is referenced by:  fucof21  49472
  Copyright terms: Public domain W3C validator