Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco2eld Structured version   Visualization version   GIF version

Theorem fuco2eld 49344
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco2eld.w (𝜑𝑊 = (𝑆 × 𝑅))
fuco2eld.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco2eld.k (𝜑𝐾𝑆𝐿)
fuco2eld.f (𝜑𝐹𝑅𝐺)
Assertion
Ref Expression
fuco2eld (𝜑𝑈𝑊)

Proof of Theorem fuco2eld
StepHypRef Expression
1 fuco2eld.k . . 3 (𝜑𝐾𝑆𝐿)
2 fuco2eld.f . . 3 (𝜑𝐹𝑅𝐺)
3 fuco2el 49343 . . 3 (⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩ ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿𝐹𝑅𝐺))
41, 2, 3sylanbrc 583 . 2 (𝜑 → ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩ ∈ (𝑆 × 𝑅))
5 fuco2eld.u . 2 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
6 fuco2eld.w . 2 (𝜑𝑊 = (𝑆 × 𝑅))
74, 5, 63eltr4d 2846 1 (𝜑𝑈𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622
This theorem is referenced by:  fuco11  49357  fuco11cl  49358  fuco21  49367
  Copyright terms: Public domain W3C validator