Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco2eld Structured version   Visualization version   GIF version

Theorem fuco2eld 48882
Description: Equivalence of product functor. (Contributed by Zhi Wang, 29-Sep-2025.)
Hypotheses
Ref Expression
fuco2eld.w (𝜑𝑊 = (𝑆 × 𝑅))
fuco2eld.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco2eld.k (𝜑𝐾𝑆𝐿)
fuco2eld.f (𝜑𝐹𝑅𝐺)
Assertion
Ref Expression
fuco2eld (𝜑𝑈𝑊)

Proof of Theorem fuco2eld
StepHypRef Expression
1 fuco2eld.k . . 3 (𝜑𝐾𝑆𝐿)
2 fuco2eld.f . . 3 (𝜑𝐹𝑅𝐺)
3 fuco2el 48881 . . 3 (⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩ ∈ (𝑆 × 𝑅) ↔ (𝐾𝑆𝐿𝐹𝑅𝐺))
41, 2, 3sylanbrc 583 . 2 (𝜑 → ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩ ∈ (𝑆 × 𝑅))
5 fuco2eld.u . 2 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
6 fuco2eld.w . 2 (𝜑𝑊 = (𝑆 × 𝑅))
74, 5, 63eltr4d 2856 1 (𝜑𝑈𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4640   class class class wbr 5151   × cxp 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699
This theorem is referenced by:  fuco11  48895  fuco11cl  48896  fuco21  48905
  Copyright terms: Public domain W3C validator