| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5956 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 6505 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 ↾ cres 5625 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-res 5635 df-fun 6488 |
| This theorem is referenced by: funresd 6529 fores 6750 resfunexg 7155 funfvima 7170 funiunfv 7188 fprlem1 8240 smores 8282 smores2 8284 frfnom 8364 sbthlem7 9017 fsuppres 9302 ordtypelem4 9432 wdomima2g 9497 imadomg 10447 hashres 14363 hashimarn 14365 setsfun 17100 setsfun0 17101 lubfun 18274 glbfun 18287 qtoptop2 23602 volf 25446 nolesgn2ores 27600 nosupres 27635 nosupbnd2lem1 27643 noetasuplem4 27664 noetainflem4 27668 onsiso 28192 bdayn0sf1o 28282 uhgrspansubgrlem 29253 upgrres 29269 umgrres 29270 hlimf 31199 fsuppcurry1 32681 fsuppcurry2 32682 eulerpartlemmf 34345 eulerpartlemgvv 34346 bj-funidres 37127 imadomfi 41978 funcoressn 47030 fundmdfat 47117 afvelrn 47156 dmfcoafv 47163 aovmpt4g 47189 fundmafv2rnb 47218 |
| Copyright terms: Public domain | W3C validator |