| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5988 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 6554 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ↾ cres 5656 Fun wfun 6524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-res 5666 df-fun 6532 |
| This theorem is referenced by: funresd 6578 fores 6799 resfunexg 7206 funfvima 7221 funiunfv 7239 fprlem1 8297 wfrlem5OLD 8325 smores 8364 smores2 8366 frfnom 8447 sbthlem7 9101 fsuppres 9403 ordtypelem4 9533 wdomima2g 9598 imadomg 10546 hashres 14454 hashimarn 14456 setsfun 17188 setsfun0 17189 lubfun 18360 glbfun 18373 qtoptop2 23635 volf 25480 nolesgn2ores 27634 nosupres 27669 nosupbnd2lem1 27677 noetasuplem4 27698 noetainflem4 27702 uhgrspansubgrlem 29215 upgrres 29231 umgrres 29232 hlimf 31164 fsuppcurry1 32648 fsuppcurry2 32649 eulerpartlemmf 34353 eulerpartlemgvv 34354 bj-funidres 37115 imadomfi 41961 funcoressn 47019 fundmdfat 47106 afvelrn 47145 dmfcoafv 47152 aovmpt4g 47178 fundmafv2rnb 47207 |
| Copyright terms: Public domain | W3C validator |