| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5972 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 6535 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 ↾ cres 5640 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-res 5650 df-fun 6513 |
| This theorem is referenced by: funresd 6559 fores 6782 resfunexg 7189 funfvima 7204 funiunfv 7222 fprlem1 8279 smores 8321 smores2 8323 frfnom 8403 sbthlem7 9057 fsuppres 9344 ordtypelem4 9474 wdomima2g 9539 imadomg 10487 hashres 14403 hashimarn 14405 setsfun 17141 setsfun0 17142 lubfun 18311 glbfun 18324 qtoptop2 23586 volf 25430 nolesgn2ores 27584 nosupres 27619 nosupbnd2lem1 27627 noetasuplem4 27648 noetainflem4 27652 onsiso 28169 bdayn0sf1o 28259 uhgrspansubgrlem 29217 upgrres 29233 umgrres 29234 hlimf 31166 fsuppcurry1 32648 fsuppcurry2 32649 eulerpartlemmf 34366 eulerpartlemgvv 34367 bj-funidres 37139 imadomfi 41990 funcoressn 47043 fundmdfat 47130 afvelrn 47169 dmfcoafv 47176 aovmpt4g 47202 fundmafv2rnb 47231 |
| Copyright terms: Public domain | W3C validator |