| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5945 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 6495 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 ↾ cres 5613 Fun wfun 6470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-res 5623 df-fun 6478 |
| This theorem is referenced by: funresd 6519 fores 6740 resfunexg 7144 funfvima 7159 funiunfv 7177 fprlem1 8225 smores 8267 smores2 8269 frfnom 8349 sbthlem7 9001 fsuppres 9272 ordtypelem4 9402 wdomima2g 9467 imadomg 10420 hashres 14340 hashimarn 14342 setsfun 17077 setsfun0 17078 lubfun 18251 glbfun 18264 qtoptop2 23609 volf 25452 nolesgn2ores 27606 nosupres 27641 nosupbnd2lem1 27649 noetasuplem4 27670 noetainflem4 27674 onsiso 28200 bdayn0sf1o 28290 uhgrspansubgrlem 29263 upgrres 29279 umgrres 29280 hlimf 31209 fsuppcurry1 32699 fsuppcurry2 32700 eulerpartlemmf 34380 eulerpartlemgvv 34381 bj-funidres 37185 imadomfi 42035 funcoressn 47073 fundmdfat 47160 afvelrn 47199 dmfcoafv 47206 aovmpt4g 47232 fundmafv2rnb 47261 |
| Copyright terms: Public domain | W3C validator |