| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5957 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 6508 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 ↾ cres 5623 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-res 5633 df-fun 6491 |
| This theorem is referenced by: funresd 6532 fores 6753 resfunexg 7158 funfvima 7173 funiunfv 7191 fprlem1 8239 smores 8281 smores2 8283 frfnom 8363 sbthlem7 9017 fsuppres 9288 ordtypelem4 9418 wdomima2g 9483 imadomg 10436 hashres 14352 hashimarn 14354 setsfun 17089 setsfun0 17090 lubfun 18264 glbfun 18277 qtoptop2 23634 volf 25477 nolesgn2ores 27631 nosupres 27666 nosupbnd2lem1 27674 noetasuplem4 27695 noetainflem4 27699 onsiso 28225 bdayn0sf1o 28315 uhgrspansubgrlem 29289 upgrres 29305 umgrres 29306 hlimf 31238 fsuppcurry1 32731 fsuppcurry2 32732 eulerpartlemmf 34460 eulerpartlemgvv 34461 bj-funidres 37268 imadomfi 42168 funcoressn 47204 fundmdfat 47291 afvelrn 47330 dmfcoafv 47337 aovmpt4g 47363 fundmafv2rnb 47392 |
| Copyright terms: Public domain | W3C validator |