| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5975 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | funss 6538 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 ↾ cres 5643 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-res 5653 df-fun 6516 |
| This theorem is referenced by: funresd 6562 fores 6785 resfunexg 7192 funfvima 7207 funiunfv 7225 fprlem1 8282 smores 8324 smores2 8326 frfnom 8406 sbthlem7 9063 fsuppres 9351 ordtypelem4 9481 wdomima2g 9546 imadomg 10494 hashres 14410 hashimarn 14412 setsfun 17148 setsfun0 17149 lubfun 18318 glbfun 18331 qtoptop2 23593 volf 25437 nolesgn2ores 27591 nosupres 27626 nosupbnd2lem1 27634 noetasuplem4 27655 noetainflem4 27659 onsiso 28176 bdayn0sf1o 28266 uhgrspansubgrlem 29224 upgrres 29240 umgrres 29241 hlimf 31173 fsuppcurry1 32655 fsuppcurry2 32656 eulerpartlemmf 34373 eulerpartlemgvv 34374 bj-funidres 37146 imadomfi 41997 funcoressn 47047 fundmdfat 47134 afvelrn 47173 dmfcoafv 47180 aovmpt4g 47206 fundmafv2rnb 47235 |
| Copyright terms: Public domain | W3C validator |