Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5916 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | funss 6453 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3887 ↾ cres 5591 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-res 5601 df-fun 6435 |
This theorem is referenced by: funresd 6477 fnresiOLD 6562 fores 6698 resfunexg 7091 funfvima 7106 funiunfv 7121 fprlem1 8116 wfrlem5OLD 8144 smores 8183 smores2 8185 frfnom 8266 sbthlem7 8876 fsuppres 9153 ordtypelem4 9280 wdomima2g 9345 imadomg 10290 hashres 14153 hashimarn 14155 setsfun 16872 setsfun0 16873 lubfun 18070 glbfun 18083 qtoptop2 22850 volf 24693 uhgrspansubgrlem 27657 upgrres 27673 umgrres 27674 hlimf 29599 fsuppcurry1 31060 fsuppcurry2 31061 eulerpartlemmf 32342 eulerpartlemgvv 32343 nolesgn2ores 33875 nosupres 33910 nosupbnd2lem1 33918 noetasuplem4 33939 noetainflem4 33943 bj-funidres 35322 funcoressn 44536 fundmdfat 44621 afvelrn 44660 dmfcoafv 44667 aovmpt4g 44693 fundmafv2rnb 44722 |
Copyright terms: Public domain | W3C validator |