![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6031 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | funss 6597 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ↾ cres 5702 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-res 5712 df-fun 6575 |
This theorem is referenced by: funresd 6621 fores 6844 resfunexg 7252 funfvima 7267 funiunfv 7285 fprlem1 8341 wfrlem5OLD 8369 smores 8408 smores2 8410 frfnom 8491 sbthlem7 9155 fsuppres 9462 ordtypelem4 9590 wdomima2g 9655 imadomg 10603 hashres 14487 hashimarn 14489 setsfun 17218 setsfun0 17219 lubfun 18422 glbfun 18435 qtoptop2 23728 volf 25583 nolesgn2ores 27735 nosupres 27770 nosupbnd2lem1 27778 noetasuplem4 27799 noetainflem4 27803 uhgrspansubgrlem 29325 upgrres 29341 umgrres 29342 hlimf 31269 fsuppcurry1 32739 fsuppcurry2 32740 eulerpartlemmf 34340 eulerpartlemgvv 34341 bj-funidres 37117 imadomfi 41959 funcoressn 46957 fundmdfat 47044 afvelrn 47083 dmfcoafv 47090 aovmpt4g 47116 fundmafv2rnb 47145 |
Copyright terms: Public domain | W3C validator |