Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5905 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | funss 6437 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ↾ cres 5582 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-res 5592 df-fun 6420 |
This theorem is referenced by: funresd 6461 fnresiOLD 6546 fores 6682 resfunexg 7073 funfvima 7088 funiunfv 7103 fprlem1 8087 wfrlem5OLD 8115 smores 8154 smores2 8156 frfnom 8236 sbthlem7 8829 fsuppres 9083 ordtypelem4 9210 wdomima2g 9275 imadomg 10221 hashres 14081 hashimarn 14083 setsfun 16800 setsfun0 16801 lubfun 17985 glbfun 17998 qtoptop2 22758 volf 24598 uhgrspansubgrlem 27560 upgrres 27576 umgrres 27577 hlimf 29500 fsuppcurry1 30962 fsuppcurry2 30963 eulerpartlemmf 32242 eulerpartlemgvv 32243 nolesgn2ores 33802 nosupres 33837 nosupbnd2lem1 33845 noetasuplem4 33866 noetainflem4 33870 bj-funidres 35249 funcoressn 44423 fundmdfat 44508 afvelrn 44547 dmfcoafv 44554 aovmpt4g 44580 fundmafv2rnb 44609 |
Copyright terms: Public domain | W3C validator |