![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funres | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
funres | ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6021 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | funss 6586 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3962 ↾ cres 5690 Fun wfun 6556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-ss 3979 df-br 5148 df-opab 5210 df-rel 5695 df-cnv 5696 df-co 5697 df-res 5700 df-fun 6564 |
This theorem is referenced by: funresd 6610 fores 6830 resfunexg 7234 funfvima 7249 funiunfv 7267 fprlem1 8323 wfrlem5OLD 8351 smores 8390 smores2 8392 frfnom 8473 sbthlem7 9127 fsuppres 9430 ordtypelem4 9558 wdomima2g 9623 imadomg 10571 hashres 14473 hashimarn 14475 setsfun 17204 setsfun0 17205 lubfun 18409 glbfun 18422 qtoptop2 23722 volf 25577 nolesgn2ores 27731 nosupres 27766 nosupbnd2lem1 27774 noetasuplem4 27795 noetainflem4 27799 uhgrspansubgrlem 29321 upgrres 29337 umgrres 29338 hlimf 31265 fsuppcurry1 32742 fsuppcurry2 32743 eulerpartlemmf 34356 eulerpartlemgvv 34357 bj-funidres 37133 imadomfi 41983 funcoressn 46991 fundmdfat 47078 afvelrn 47117 dmfcoafv 47124 aovmpt4g 47150 fundmafv2rnb 47179 |
Copyright terms: Public domain | W3C validator |