MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomima2g Structured version   Visualization version   GIF version

Theorem wdomima2g 9483
Description: A set is weakly dominant over its image under any function. This version of wdomimag 9484 is stated so as to avoid ax-rep 5221. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wdomima2g ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)

Proof of Theorem wdomima2g
StepHypRef Expression
1 df-ima 5634 . 2 (𝐹𝐴) = ran (𝐹𝐴)
2 funres 6531 . . . . . . . 8 (Fun 𝐹 → Fun (𝐹𝐴))
3 funforn 6750 . . . . . . . 8 (Fun (𝐹𝐴) ↔ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
42, 3sylib 218 . . . . . . 7 (Fun 𝐹 → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
543ad2ant1 1133 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
6 fof 6743 . . . . . 6 ((𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
75, 6syl 17 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
8 dmres 5968 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
9 inss1 4186 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
108, 9eqsstri 3977 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
11 simp2 1137 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → 𝐴𝑉)
12 ssexg 5265 . . . . . 6 ((dom (𝐹𝐴) ⊆ 𝐴𝐴𝑉) → dom (𝐹𝐴) ∈ V)
1310, 11, 12sylancr 587 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ∈ V)
14 simp3 1138 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ 𝑊)
151, 14eqeltrrid 2838 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ∈ 𝑊)
16 fex2 7875 . . . . 5 (((𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴) ∧ dom (𝐹𝐴) ∈ V ∧ ran (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
177, 13, 15, 16syl3anc 1373 . . . 4 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
18 fowdom 9468 . . . 4 (((𝐹𝐴) ∈ V ∧ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴)) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
1917, 5, 18syl2anc 584 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
20 ssdomg 8933 . . . . . 6 (𝐴𝑉 → (dom (𝐹𝐴) ⊆ 𝐴 → dom (𝐹𝐴) ≼ 𝐴))
2110, 20mpi 20 . . . . 5 (𝐴𝑉 → dom (𝐹𝐴) ≼ 𝐴)
22 domwdom 9471 . . . . 5 (dom (𝐹𝐴) ≼ 𝐴 → dom (𝐹𝐴) ≼* 𝐴)
2321, 22syl 17 . . . 4 (𝐴𝑉 → dom (𝐹𝐴) ≼* 𝐴)
24233ad2ant2 1134 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ≼* 𝐴)
25 wdomtr 9472 . . 3 ((ran (𝐹𝐴) ≼* dom (𝐹𝐴) ∧ dom (𝐹𝐴) ≼* 𝐴) → ran (𝐹𝐴) ≼* 𝐴)
2619, 24, 25syl2anc 584 . 2 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* 𝐴)
271, 26eqbrtrid 5130 1 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2113  Vcvv 3437  cin 3897  wss 3898   class class class wbr 5095  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  Fun wfun 6483  wf 6485  ontowfo 6487  cdom 8877  * cwdom 9461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-en 8880  df-dom 8881  df-sdom 8882  df-wdom 9462
This theorem is referenced by:  wdomimag  9484  unxpwdom2  9485
  Copyright terms: Public domain W3C validator