MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomima2g Structured version   Visualization version   GIF version

Theorem wdomima2g 9655
Description: A set is weakly dominant over its image under any function. This version of wdomimag 9656 is stated so as to avoid ax-rep 5303. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wdomima2g ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)

Proof of Theorem wdomima2g
StepHypRef Expression
1 df-ima 5713 . 2 (𝐹𝐴) = ran (𝐹𝐴)
2 funres 6620 . . . . . . . 8 (Fun 𝐹 → Fun (𝐹𝐴))
3 funforn 6841 . . . . . . . 8 (Fun (𝐹𝐴) ↔ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
42, 3sylib 218 . . . . . . 7 (Fun 𝐹 → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
543ad2ant1 1133 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
6 fof 6834 . . . . . 6 ((𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
75, 6syl 17 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
8 dmres 6041 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
9 inss1 4258 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
108, 9eqsstri 4043 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
11 simp2 1137 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → 𝐴𝑉)
12 ssexg 5341 . . . . . 6 ((dom (𝐹𝐴) ⊆ 𝐴𝐴𝑉) → dom (𝐹𝐴) ∈ V)
1310, 11, 12sylancr 586 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ∈ V)
14 simp3 1138 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ 𝑊)
151, 14eqeltrrid 2849 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ∈ 𝑊)
16 fex2 7974 . . . . 5 (((𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴) ∧ dom (𝐹𝐴) ∈ V ∧ ran (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
177, 13, 15, 16syl3anc 1371 . . . 4 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
18 fowdom 9640 . . . 4 (((𝐹𝐴) ∈ V ∧ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴)) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
1917, 5, 18syl2anc 583 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
20 ssdomg 9060 . . . . . 6 (𝐴𝑉 → (dom (𝐹𝐴) ⊆ 𝐴 → dom (𝐹𝐴) ≼ 𝐴))
2110, 20mpi 20 . . . . 5 (𝐴𝑉 → dom (𝐹𝐴) ≼ 𝐴)
22 domwdom 9643 . . . . 5 (dom (𝐹𝐴) ≼ 𝐴 → dom (𝐹𝐴) ≼* 𝐴)
2321, 22syl 17 . . . 4 (𝐴𝑉 → dom (𝐹𝐴) ≼* 𝐴)
24233ad2ant2 1134 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ≼* 𝐴)
25 wdomtr 9644 . . 3 ((ran (𝐹𝐴) ≼* dom (𝐹𝐴) ∧ dom (𝐹𝐴) ≼* 𝐴) → ran (𝐹𝐴) ≼* 𝐴)
2619, 24, 25syl2anc 583 . 2 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* 𝐴)
271, 26eqbrtrid 5201 1 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  wf 6569  ontowfo 6571  cdom 9001  * cwdom 9633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004  df-dom 9005  df-sdom 9006  df-wdom 9634
This theorem is referenced by:  wdomimag  9656  unxpwdom2  9657
  Copyright terms: Public domain W3C validator