MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomima2g Structured version   Visualization version   GIF version

Theorem wdomima2g 9515
Description: A set is weakly dominant over its image under any function. This version of wdomimag 9516 is stated so as to avoid ax-rep 5229. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wdomima2g ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)

Proof of Theorem wdomima2g
StepHypRef Expression
1 df-ima 5644 . 2 (𝐹𝐴) = ran (𝐹𝐴)
2 funres 6542 . . . . . . . 8 (Fun 𝐹 → Fun (𝐹𝐴))
3 funforn 6761 . . . . . . . 8 (Fun (𝐹𝐴) ↔ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
42, 3sylib 218 . . . . . . 7 (Fun 𝐹 → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
543ad2ant1 1133 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
6 fof 6754 . . . . . 6 ((𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
75, 6syl 17 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
8 dmres 5972 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
9 inss1 4196 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
108, 9eqsstri 3990 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
11 simp2 1137 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → 𝐴𝑉)
12 ssexg 5273 . . . . . 6 ((dom (𝐹𝐴) ⊆ 𝐴𝐴𝑉) → dom (𝐹𝐴) ∈ V)
1310, 11, 12sylancr 587 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ∈ V)
14 simp3 1138 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ 𝑊)
151, 14eqeltrrid 2833 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ∈ 𝑊)
16 fex2 7892 . . . . 5 (((𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴) ∧ dom (𝐹𝐴) ∈ V ∧ ran (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
177, 13, 15, 16syl3anc 1373 . . . 4 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
18 fowdom 9500 . . . 4 (((𝐹𝐴) ∈ V ∧ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴)) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
1917, 5, 18syl2anc 584 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
20 ssdomg 8948 . . . . . 6 (𝐴𝑉 → (dom (𝐹𝐴) ⊆ 𝐴 → dom (𝐹𝐴) ≼ 𝐴))
2110, 20mpi 20 . . . . 5 (𝐴𝑉 → dom (𝐹𝐴) ≼ 𝐴)
22 domwdom 9503 . . . . 5 (dom (𝐹𝐴) ≼ 𝐴 → dom (𝐹𝐴) ≼* 𝐴)
2321, 22syl 17 . . . 4 (𝐴𝑉 → dom (𝐹𝐴) ≼* 𝐴)
24233ad2ant2 1134 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ≼* 𝐴)
25 wdomtr 9504 . . 3 ((ran (𝐹𝐴) ≼* dom (𝐹𝐴) ∧ dom (𝐹𝐴) ≼* 𝐴) → ran (𝐹𝐴) ≼* 𝐴)
2619, 24, 25syl2anc 584 . 2 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* 𝐴)
271, 26eqbrtrid 5137 1 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  Vcvv 3444  cin 3910  wss 3911   class class class wbr 5102  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Fun wfun 6493  wf 6495  ontowfo 6497  cdom 8893  * cwdom 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-en 8896  df-dom 8897  df-sdom 8898  df-wdom 9494
This theorem is referenced by:  wdomimag  9516  unxpwdom2  9517
  Copyright terms: Public domain W3C validator