MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomima2g Structured version   Visualization version   GIF version

Theorem wdomima2g 9624
Description: A set is weakly dominant over its image under any function. This version of wdomimag 9625 is stated so as to avoid ax-rep 5285. (Contributed by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wdomima2g ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)

Proof of Theorem wdomima2g
StepHypRef Expression
1 df-ima 5702 . 2 (𝐹𝐴) = ran (𝐹𝐴)
2 funres 6610 . . . . . . . 8 (Fun 𝐹 → Fun (𝐹𝐴))
3 funforn 6828 . . . . . . . 8 (Fun (𝐹𝐴) ↔ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
42, 3sylib 218 . . . . . . 7 (Fun 𝐹 → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
543ad2ant1 1132 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴))
6 fof 6821 . . . . . 6 ((𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
75, 6syl 17 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴))
8 dmres 6032 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
9 inss1 4245 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
108, 9eqsstri 4030 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
11 simp2 1136 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → 𝐴𝑉)
12 ssexg 5329 . . . . . 6 ((dom (𝐹𝐴) ⊆ 𝐴𝐴𝑉) → dom (𝐹𝐴) ∈ V)
1310, 11, 12sylancr 587 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ∈ V)
14 simp3 1137 . . . . . 6 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ 𝑊)
151, 14eqeltrrid 2844 . . . . 5 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ∈ 𝑊)
16 fex2 7957 . . . . 5 (((𝐹𝐴):dom (𝐹𝐴)⟶ran (𝐹𝐴) ∧ dom (𝐹𝐴) ∈ V ∧ ran (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
177, 13, 15, 16syl3anc 1370 . . . 4 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ∈ V)
18 fowdom 9609 . . . 4 (((𝐹𝐴) ∈ V ∧ (𝐹𝐴):dom (𝐹𝐴)–onto→ran (𝐹𝐴)) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
1917, 5, 18syl2anc 584 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* dom (𝐹𝐴))
20 ssdomg 9039 . . . . . 6 (𝐴𝑉 → (dom (𝐹𝐴) ⊆ 𝐴 → dom (𝐹𝐴) ≼ 𝐴))
2110, 20mpi 20 . . . . 5 (𝐴𝑉 → dom (𝐹𝐴) ≼ 𝐴)
22 domwdom 9612 . . . . 5 (dom (𝐹𝐴) ≼ 𝐴 → dom (𝐹𝐴) ≼* 𝐴)
2321, 22syl 17 . . . 4 (𝐴𝑉 → dom (𝐹𝐴) ≼* 𝐴)
24233ad2ant2 1133 . . 3 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → dom (𝐹𝐴) ≼* 𝐴)
25 wdomtr 9613 . . 3 ((ran (𝐹𝐴) ≼* dom (𝐹𝐴) ∧ dom (𝐹𝐴) ≼* 𝐴) → ran (𝐹𝐴) ≼* 𝐴)
2619, 24, 25syl2anc 584 . 2 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → ran (𝐹𝐴) ≼* 𝐴)
271, 26eqbrtrid 5183 1 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ 𝑊) → (𝐹𝐴) ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  Vcvv 3478  cin 3962  wss 3963   class class class wbr 5148  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  Fun wfun 6557  wf 6559  ontowfo 6561  cdom 8982  * cwdom 9602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-en 8985  df-dom 8986  df-sdom 8987  df-wdom 9603
This theorem is referenced by:  wdomimag  9625  unxpwdom2  9626
  Copyright terms: Public domain W3C validator