Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsupprnfi Structured version   Visualization version   GIF version

Theorem fsupprnfi 32669
Description: Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.)
Assertion
Ref Expression
fsupprnfi (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin)

Proof of Theorem fsupprnfi
StepHypRef Expression
1 snfi 9057 . 2 { 0 } ∈ Fin
2 simpll 766 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → Fun 𝐹)
3 simplr 768 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 𝐹𝑉)
4 simprl 770 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 0𝑊)
5 ressupprn 32667 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
62, 3, 4, 5syl3anc 1373 . . 3 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
7 simprr 772 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
87fsuppimpd 9381 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 supp 0 ) ∈ Fin)
9 suppssdm 8176 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
10 ssdmres 6000 . . . . . 6 ((𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
119, 10mpbi 230 . . . . 5 dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 )
122funresd 6579 . . . . . 6 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → Fun (𝐹 ↾ (𝐹 supp 0 )))
13 funforn 6797 . . . . . 6 (Fun (𝐹 ↾ (𝐹 supp 0 )) ↔ (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
1412, 13sylib 218 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
15 foeq2 6787 . . . . . 6 (dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ) → ((𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )) ↔ (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 ))))
1615biimpa 476 . . . . 5 ((dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ) ∧ (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
1711, 14, 16sylancr 587 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
18 fofi 9323 . . . 4 (((𝐹 supp 0 ) ∈ Fin ∧ (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 ))) → ran (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
198, 17, 18syl2anc 584 . . 3 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
206, 19eqeltrrd 2835 . 2 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (ran 𝐹 ∖ { 0 }) ∈ Fin)
21 diffib 32502 . . 3 ({ 0 } ∈ Fin → (ran 𝐹 ∈ Fin ↔ (ran 𝐹 ∖ { 0 }) ∈ Fin))
2221biimpar 477 . 2 (({ 0 } ∈ Fin ∧ (ran 𝐹 ∖ { 0 }) ∈ Fin) → ran 𝐹 ∈ Fin)
231, 20, 22sylancr 587 1 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  wss 3926  {csn 4601   class class class wbr 5119  dom cdm 5654  ran crn 5655  cres 5656  Fun wfun 6525  ontowfo 6529  (class class class)co 7405   supp csupp 8159  Fincfn 8959   finSupp cfsupp 9373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-supp 8160  df-1o 8480  df-en 8960  df-dom 8961  df-fin 8963  df-fsupp 9374
This theorem is referenced by:  elrspunidl  33443
  Copyright terms: Public domain W3C validator