Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsupprnfi Structured version   Visualization version   GIF version

Theorem fsupprnfi 32673
Description: Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.)
Assertion
Ref Expression
fsupprnfi (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin)

Proof of Theorem fsupprnfi
StepHypRef Expression
1 snfi 8965 . 2 { 0 } ∈ Fin
2 simpll 766 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → Fun 𝐹)
3 simplr 768 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 𝐹𝑉)
4 simprl 770 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 0𝑊)
5 ressupprn 32671 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
62, 3, 4, 5syl3anc 1373 . . 3 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
7 simprr 772 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
87fsuppimpd 9253 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 supp 0 ) ∈ Fin)
9 suppssdm 8107 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
10 ssdmres 5961 . . . . . 6 ((𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
119, 10mpbi 230 . . . . 5 dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 )
122funresd 6524 . . . . . 6 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → Fun (𝐹 ↾ (𝐹 supp 0 )))
13 funforn 6742 . . . . . 6 (Fun (𝐹 ↾ (𝐹 supp 0 )) ↔ (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
1412, 13sylib 218 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
15 foeq2 6732 . . . . . 6 (dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ) → ((𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )) ↔ (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 ))))
1615biimpa 476 . . . . 5 ((dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ) ∧ (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
1711, 14, 16sylancr 587 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
18 fofi 9197 . . . 4 (((𝐹 supp 0 ) ∈ Fin ∧ (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 ))) → ran (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
198, 17, 18syl2anc 584 . . 3 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
206, 19eqeltrrd 2832 . 2 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (ran 𝐹 ∖ { 0 }) ∈ Fin)
21 diffib 32501 . . 3 ({ 0 } ∈ Fin → (ran 𝐹 ∈ Fin ↔ (ran 𝐹 ∖ { 0 }) ∈ Fin))
2221biimpar 477 . 2 (({ 0 } ∈ Fin ∧ (ran 𝐹 ∖ { 0 }) ∈ Fin) → ran 𝐹 ∈ Fin)
231, 20, 22sylancr 587 1 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3894  wss 3897  {csn 4573   class class class wbr 5089  dom cdm 5614  ran crn 5615  cres 5616  Fun wfun 6475  ontowfo 6479  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-supp 8091  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873  df-fsupp 9246
This theorem is referenced by:  elrspunidl  33393
  Copyright terms: Public domain W3C validator