Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsupprnfi Structured version   Visualization version   GIF version

Theorem fsupprnfi 32634
Description: Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.)
Assertion
Ref Expression
fsupprnfi (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin)

Proof of Theorem fsupprnfi
StepHypRef Expression
1 snfi 8968 . 2 { 0 } ∈ Fin
2 simpll 766 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → Fun 𝐹)
3 simplr 768 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 𝐹𝑉)
4 simprl 770 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 0𝑊)
5 ressupprn 32632 . . . 4 ((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
62, 3, 4, 5syl3anc 1373 . . 3 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
7 simprr 772 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
87fsuppimpd 9259 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 supp 0 ) ∈ Fin)
9 suppssdm 8110 . . . . . 6 (𝐹 supp 0 ) ⊆ dom 𝐹
10 ssdmres 5964 . . . . . 6 ((𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
119, 10mpbi 230 . . . . 5 dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 )
122funresd 6525 . . . . . 6 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → Fun (𝐹 ↾ (𝐹 supp 0 )))
13 funforn 6743 . . . . . 6 (Fun (𝐹 ↾ (𝐹 supp 0 )) ↔ (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
1412, 13sylib 218 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
15 foeq2 6733 . . . . . 6 (dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ) → ((𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 )) ↔ (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 ))))
1615biimpa 476 . . . . 5 ((dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ) ∧ (𝐹 ↾ (𝐹 supp 0 )):dom (𝐹 ↾ (𝐹 supp 0 ))–onto→ran (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
1711, 14, 16sylancr 587 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 )))
18 fofi 9202 . . . 4 (((𝐹 supp 0 ) ∈ Fin ∧ (𝐹 ↾ (𝐹 supp 0 )):(𝐹 supp 0 )–onto→ran (𝐹 ↾ (𝐹 supp 0 ))) → ran (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
198, 17, 18syl2anc 584 . . 3 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
206, 19eqeltrrd 2829 . 2 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → (ran 𝐹 ∖ { 0 }) ∈ Fin)
21 diffib 32465 . . 3 ({ 0 } ∈ Fin → (ran 𝐹 ∈ Fin ↔ (ran 𝐹 ∖ { 0 }) ∈ Fin))
2221biimpar 477 . 2 (({ 0 } ∈ Fin ∧ (ran 𝐹 ∖ { 0 }) ∈ Fin) → ran 𝐹 ∈ Fin)
231, 20, 22sylancr 587 1 (((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3900  wss 3903  {csn 4577   class class class wbr 5092  dom cdm 5619  ran crn 5620  cres 5621  Fun wfun 6476  ontowfo 6480  (class class class)co 7349   supp csupp 8093  Fincfn 8872   finSupp cfsupp 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-supp 8094  df-1o 8388  df-en 8873  df-dom 8874  df-fin 8876  df-fsupp 9252
This theorem is referenced by:  elrspunidl  33365
  Copyright terms: Public domain W3C validator