| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version | ||
| Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 6491 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5621 Fun wfun 6482 Fn wfn 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-fn 6491 |
| This theorem is referenced by: funfnd 6519 funssxp 6686 funforn 6749 funbrfvb 6883 funopfvb 6884 ssimaex 6915 fvco 6928 fvco4i 6931 eqfunfv 6977 fvimacnvi 6993 unpreima 7004 respreima 7007 elrnrexdm 7030 elrnrexdmb 7031 ffvresb 7066 funiun 7088 funressn 7100 funresdfunsn 7131 funex 7161 elunirn 7193 suppval1 8104 funsssuppss 8128 smores 8280 rdgsucg 8350 rdglimg 8352 imafiOLD 9209 fundmfibi 9229 residfi 9231 mptfi 9244 ordtypelem6 9418 ordtypelem7 9419 harwdom 9486 ackbij2 10142 mptct 10438 smobeth 10486 hashkf 14243 hashfun 14348 fclim 15464 coapm 17982 psgnghm 21521 lindfrn 21762 elno3 27597 noextenddif 27610 noextendlt 27611 noextendgt 27612 nosupbnd2lem1 27657 noetasuplem4 27678 ausgrumgri 29149 dfnbgr3 29320 wlkiswwlks1 29849 vdn0conngrumgrv2 30180 hlimf 31221 adj1o 31878 abrexdomjm 32491 iunpreima 32548 fresf1o 32617 unipreima 32629 xppreima 32631 rnressnsn 32664 suppiniseg 32673 fdifsuppconst 32676 ressupprn 32677 mptctf 32705 orvcval2 34495 fineqvac 35162 fullfunfnv 36013 fullfunfv 36014 abrexdom 37793 diaf11N 41171 dibf11N 41283 imadomfi 42118 gneispace3 44253 fresfo 47175 funbrafvb 47283 funopafvb 47284 funbrafv22b 47377 funopafv2b 47378 dfclnbgr3 47953 grimuhgr 48014 |
| Copyright terms: Public domain | W3C validator |