| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version | ||
| Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 6517 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5641 Fun wfun 6508 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 |
| This theorem is referenced by: funfnd 6550 funssxp 6719 funforn 6782 funbrfvb 6917 funopfvb 6918 ssimaex 6949 fvco 6962 fvco4i 6965 eqfunfv 7011 fvimacnvi 7027 unpreima 7038 respreima 7041 elrnrexdm 7064 elrnrexdmb 7065 ffvresb 7100 funiun 7122 funressn 7134 funresdfunsn 7166 funex 7196 elunirn 7228 suppval1 8148 funsssuppss 8172 smores 8324 rdgsucg 8394 rdglimg 8396 imafiOLD 9272 fundmfibi 9294 residfi 9296 mptfi 9309 ordtypelem6 9483 ordtypelem7 9484 harwdom 9551 ackbij2 10202 mptct 10498 smobeth 10546 hashkf 14304 hashfun 14409 fclim 15526 coapm 18040 psgnghm 21496 lindfrn 21737 elno3 27574 noextenddif 27587 noextendlt 27588 noextendgt 27589 nosupbnd2lem1 27634 noetasuplem4 27655 ausgrumgri 29101 dfnbgr3 29272 wlkiswwlks1 29804 vdn0conngrumgrv2 30132 hlimf 31173 adj1o 31830 abrexdomjm 32443 iunpreima 32500 fresf1o 32562 unipreima 32574 xppreima 32576 suppiniseg 32616 fdifsuppconst 32619 ressupprn 32620 mptctf 32648 orvcval2 34457 fineqvac 35094 fullfunfnv 35941 fullfunfv 35942 abrexdom 37731 diaf11N 41050 dibf11N 41162 imadomfi 41997 gneispace3 44129 fresfo 47053 funbrafvb 47161 funopafvb 47162 funbrafv22b 47255 funopafv2b 47256 dfclnbgr3 47831 grimuhgr 47891 |
| Copyright terms: Public domain | W3C validator |