![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version |
Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 6576 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 dom cdm 5700 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 |
This theorem is referenced by: funfnd 6609 funssxp 6776 funforn 6841 funbrfvb 6975 funopfvb 6976 ssimaex 7007 fvco 7020 fvco4i 7023 eqfunfv 7069 fvimacnvi 7085 unpreima 7096 respreima 7099 elrnrexdm 7123 elrnrexdmb 7124 ffvresb 7159 funiun 7181 funressn 7193 funresdfunsn 7223 funex 7256 elunirn 7288 suppval1 8207 funsssuppss 8231 smores 8408 rdgsucg 8479 rdglimg 8481 imafiOLD 9382 fundmfibi 9404 residfi 9406 mptfi 9421 ordtypelem6 9592 ordtypelem7 9593 harwdom 9660 ackbij2 10311 mptct 10607 smobeth 10655 hashkf 14381 hashfun 14486 fclim 15599 coapm 18138 psgnghm 21621 lindfrn 21864 elno3 27718 noextenddif 27731 noextendlt 27732 noextendgt 27733 nosupbnd2lem1 27778 noetasuplem4 27799 ausgrumgri 29202 dfnbgr3 29373 wlkiswwlks1 29900 vdn0conngrumgrv2 30228 hlimf 31269 adj1o 31926 abrexdomjm 32535 iunpreima 32587 fresf1o 32650 unipreima 32662 xppreima 32664 suppiniseg 32698 fdifsuppconst 32701 ressupprn 32702 mptctf 32731 orvcval2 34423 fineqvac 35073 fullfunfnv 35910 fullfunfv 35911 abrexdom 37690 diaf11N 41006 dibf11N 41118 imadomfi 41959 gneispace3 44095 fresfo 46963 funbrafvb 47071 funopafvb 47072 funbrafv22b 47165 funopafv2b 47166 dfclnbgr3 47699 grimuhgr 47762 |
Copyright terms: Public domain | W3C validator |