Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version |
Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 530 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 6440 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 dom cdm 5590 Fun wfun 6431 Fn wfn 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-fn 6440 |
This theorem is referenced by: funfnd 6472 funssxp 6638 funforn 6704 funbrfvb 6833 funopfvb 6834 ssimaex 6862 fvco 6875 fvco4i 6878 eqfunfv 6923 fvimacnvi 6938 unpreima 6949 respreima 6952 elrnrexdm 6974 elrnrexdmb 6975 ffvresb 7007 funiun 7028 funressn 7040 funresdfunsn 7070 funex 7104 elunirn 7133 suppval1 7992 funsssuppss 8015 smores 8192 rdgsucg 8263 rdglimg 8265 imafi 8967 fundmfibi 9107 residfi 9109 mptfi 9127 ordtypelem6 9291 ordtypelem7 9292 harwdom 9359 ackbij2 10008 mptct 10303 smobeth 10351 hashkf 14055 hashfun 14161 fclim 15271 coapm 17795 psgnghm 20794 lindfrn 21037 ausgrumgri 27546 dfnbgr3 27714 wlkiswwlks1 28241 vdn0conngrumgrv2 28569 hlimf 29608 adj1o 30265 abrexdomjm 30861 iunpreima 30913 fresf1o 30975 unipreima 30990 xppreima 30992 suppiniseg 31029 fdifsuppconst 31032 ressupprn 31033 mptctf 31061 orvcval2 32434 fineqvac 33075 elno3 33867 noextenddif 33880 noextendlt 33881 noextendgt 33882 nosupbnd2lem1 33927 noetasuplem4 33948 fullfunfnv 34257 fullfunfv 34258 abrexdom 35897 diaf11N 39070 dibf11N 39182 gneispace3 41750 fresfo 44553 funbrafvb 44659 funopafvb 44660 funbrafv22b 44753 funopafv2b 44754 |
Copyright terms: Public domain | W3C validator |