| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version | ||
| Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 6514 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 |
| This theorem is referenced by: funfnd 6547 funssxp 6716 funforn 6779 funbrfvb 6914 funopfvb 6915 ssimaex 6946 fvco 6959 fvco4i 6962 eqfunfv 7008 fvimacnvi 7024 unpreima 7035 respreima 7038 elrnrexdm 7061 elrnrexdmb 7062 ffvresb 7097 funiun 7119 funressn 7131 funresdfunsn 7163 funex 7193 elunirn 7225 suppval1 8145 funsssuppss 8169 smores 8321 rdgsucg 8391 rdglimg 8393 imafiOLD 9265 fundmfibi 9287 residfi 9289 mptfi 9302 ordtypelem6 9476 ordtypelem7 9477 harwdom 9544 ackbij2 10195 mptct 10491 smobeth 10539 hashkf 14297 hashfun 14402 fclim 15519 coapm 18033 psgnghm 21489 lindfrn 21730 elno3 27567 noextenddif 27580 noextendlt 27581 noextendgt 27582 nosupbnd2lem1 27627 noetasuplem4 27648 ausgrumgri 29094 dfnbgr3 29265 wlkiswwlks1 29797 vdn0conngrumgrv2 30125 hlimf 31166 adj1o 31823 abrexdomjm 32436 iunpreima 32493 fresf1o 32555 unipreima 32567 xppreima 32569 suppiniseg 32609 fdifsuppconst 32612 ressupprn 32613 mptctf 32641 orvcval2 34450 fineqvac 35087 fullfunfnv 35934 fullfunfv 35935 abrexdom 37724 diaf11N 41043 dibf11N 41155 imadomfi 41990 gneispace3 44122 fresfo 47049 funbrafvb 47157 funopafvb 47158 funbrafv22b 47251 funopafv2b 47252 dfclnbgr3 47827 grimuhgr 47887 |
| Copyright terms: Public domain | W3C validator |