| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version | ||
| Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 6489 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5623 Fun wfun 6480 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6489 |
| This theorem is referenced by: funfnd 6517 funssxp 6684 funforn 6747 funbrfvb 6880 funopfvb 6881 ssimaex 6912 fvco 6925 fvco4i 6928 eqfunfv 6974 fvimacnvi 6990 unpreima 7001 respreima 7004 elrnrexdm 7027 elrnrexdmb 7028 ffvresb 7063 funiun 7085 funressn 7097 funresdfunsn 7129 funex 7159 elunirn 7191 suppval1 8106 funsssuppss 8130 smores 8282 rdgsucg 8352 rdglimg 8354 imafiOLD 9223 fundmfibi 9245 residfi 9247 mptfi 9260 ordtypelem6 9434 ordtypelem7 9435 harwdom 9502 ackbij2 10155 mptct 10451 smobeth 10499 hashkf 14257 hashfun 14362 fclim 15478 coapm 17996 psgnghm 21505 lindfrn 21746 elno3 27583 noextenddif 27596 noextendlt 27597 noextendgt 27598 nosupbnd2lem1 27643 noetasuplem4 27664 ausgrumgri 29130 dfnbgr3 29301 wlkiswwlks1 29830 vdn0conngrumgrv2 30158 hlimf 31199 adj1o 31856 abrexdomjm 32469 iunpreima 32526 fresf1o 32588 unipreima 32600 xppreima 32602 suppiniseg 32642 fdifsuppconst 32645 ressupprn 32646 mptctf 32674 orvcval2 34429 fineqvac 35074 fullfunfnv 35922 fullfunfv 35923 abrexdom 37712 diaf11N 41031 dibf11N 41143 imadomfi 41978 gneispace3 44109 fresfo 47036 funbrafvb 47144 funopafvb 47145 funbrafv22b 47238 funopafv2b 47239 dfclnbgr3 47814 grimuhgr 47875 |
| Copyright terms: Public domain | W3C validator |