Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version |
Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 6421 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 |
This theorem is referenced by: funfnd 6449 funssxp 6613 funforn 6679 funbrfvb 6806 funopfvb 6807 ssimaex 6835 fvco 6848 fvco4i 6851 eqfunfv 6896 fvimacnvi 6911 unpreima 6922 respreima 6925 elrnrexdm 6947 elrnrexdmb 6948 ffvresb 6980 funiun 7001 funressn 7013 funresdfunsn 7043 funex 7077 elunirn 7106 suppval1 7954 funsssuppss 7977 smores 8154 rdgsucg 8225 rdglimg 8227 imafi 8920 fundmfibi 9028 residfi 9030 mptfi 9048 ordtypelem6 9212 ordtypelem7 9213 harwdom 9280 ackbij2 9930 mptct 10225 smobeth 10273 hashkf 13974 hashfun 14080 fclim 15190 coapm 17702 psgnghm 20697 lindfrn 20938 ausgrumgri 27440 dfnbgr3 27608 wlkiswwlks1 28133 vdn0conngrumgrv2 28461 hlimf 29500 adj1o 30157 abrexdomjm 30753 iunpreima 30805 fresf1o 30867 unipreima 30882 xppreima 30884 suppiniseg 30922 fdifsuppconst 30925 ressupprn 30926 mptctf 30954 orvcval2 32325 fineqvac 32966 elno3 33785 noextenddif 33798 noextendlt 33799 noextendgt 33800 nosupbnd2lem1 33845 noetasuplem4 33866 fullfunfnv 34175 fullfunfv 34176 abrexdom 35815 diaf11N 38990 dibf11N 39102 gneispace3 41632 fresfo 44429 funbrafvb 44535 funopafvb 44536 funbrafv22b 44629 funopafv2b 44630 |
Copyright terms: Public domain | W3C validator |