| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version | ||
| Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 6534 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5654 Fun wfun 6525 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 |
| This theorem is referenced by: funfnd 6567 funssxp 6734 funforn 6797 funbrfvb 6932 funopfvb 6933 ssimaex 6964 fvco 6977 fvco4i 6980 eqfunfv 7026 fvimacnvi 7042 unpreima 7053 respreima 7056 elrnrexdm 7079 elrnrexdmb 7080 ffvresb 7115 funiun 7137 funressn 7149 funresdfunsn 7181 funex 7211 elunirn 7243 suppval1 8165 funsssuppss 8189 smores 8366 rdgsucg 8437 rdglimg 8439 imafiOLD 9326 fundmfibi 9348 residfi 9350 mptfi 9363 ordtypelem6 9537 ordtypelem7 9538 harwdom 9605 ackbij2 10256 mptct 10552 smobeth 10600 hashkf 14350 hashfun 14455 fclim 15569 coapm 18084 psgnghm 21540 lindfrn 21781 elno3 27619 noextenddif 27632 noextendlt 27633 noextendgt 27634 nosupbnd2lem1 27679 noetasuplem4 27700 ausgrumgri 29146 dfnbgr3 29317 wlkiswwlks1 29849 vdn0conngrumgrv2 30177 hlimf 31218 adj1o 31875 abrexdomjm 32488 iunpreima 32545 fresf1o 32609 unipreima 32621 xppreima 32623 suppiniseg 32663 fdifsuppconst 32666 ressupprn 32667 mptctf 32695 orvcval2 34491 fineqvac 35128 fullfunfnv 35964 fullfunfv 35965 abrexdom 37754 diaf11N 41068 dibf11N 41180 imadomfi 42015 gneispace3 44157 fresfo 47077 funbrafvb 47185 funopafvb 47186 funbrafv22b 47279 funopafv2b 47280 dfclnbgr3 47840 grimuhgr 47900 |
| Copyright terms: Public domain | W3C validator |