Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version |
Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
2 | 1 | biantru 531 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
3 | df-fn 6487 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1541 dom cdm 5625 Fun wfun 6478 Fn wfn 6479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-cleq 2729 df-fn 6487 |
This theorem is referenced by: funfnd 6520 funssxp 6685 funforn 6751 funbrfvb 6885 funopfvb 6886 ssimaex 6914 fvco 6927 fvco4i 6930 eqfunfv 6975 fvimacnvi 6990 unpreima 7001 respreima 7004 elrnrexdm 7026 elrnrexdmb 7027 ffvresb 7059 funiun 7080 funressn 7092 funresdfunsn 7122 funex 7156 elunirn 7185 suppval1 8058 funsssuppss 8081 smores 8258 rdgsucg 8329 rdglimg 8331 imafi 9045 fundmfibi 9201 residfi 9203 mptfi 9221 ordtypelem6 9385 ordtypelem7 9386 harwdom 9453 ackbij2 10105 mptct 10400 smobeth 10448 hashkf 14152 hashfun 14257 fclim 15362 coapm 17884 psgnghm 20891 lindfrn 21134 elno3 26909 noextenddif 26922 noextendlt 26923 noextendgt 26924 nosupbnd2lem1 26969 noetasuplem4 26990 ausgrumgri 27826 dfnbgr3 27994 wlkiswwlks1 28520 vdn0conngrumgrv2 28848 hlimf 29887 adj1o 30544 abrexdomjm 31139 iunpreima 31189 fresf1o 31251 unipreima 31266 xppreima 31268 suppiniseg 31305 fdifsuppconst 31308 ressupprn 31309 mptctf 31337 orvcval2 32723 fineqvac 33363 fullfunfnv 34385 fullfunfv 34386 abrexdom 36042 diaf11N 39366 dibf11N 39478 gneispace3 42114 fresfo 44958 funbrafvb 45064 funopafvb 45065 funbrafv22b 45158 funopafv2b 45159 |
Copyright terms: Public domain | W3C validator |