| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfn | Structured version Visualization version GIF version | ||
| Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ dom 𝐴 = dom 𝐴 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (Fun 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) |
| 3 | df-fn 6484 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5616 Fun wfun 6475 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 |
| This theorem is referenced by: funfnd 6512 funssxp 6679 funforn 6742 funbrfvb 6875 funopfvb 6876 ssimaex 6907 fvco 6920 fvco4i 6923 eqfunfv 6969 fvimacnvi 6985 unpreima 6996 respreima 6999 elrnrexdm 7022 elrnrexdmb 7023 ffvresb 7058 funiun 7080 funressn 7092 funresdfunsn 7123 funex 7153 elunirn 7185 suppval1 8096 funsssuppss 8120 smores 8272 rdgsucg 8342 rdglimg 8344 imafiOLD 9200 fundmfibi 9220 residfi 9222 mptfi 9235 ordtypelem6 9409 ordtypelem7 9410 harwdom 9477 ackbij2 10133 mptct 10429 smobeth 10477 hashkf 14239 hashfun 14344 fclim 15460 coapm 17978 psgnghm 21518 lindfrn 21759 elno3 27595 noextenddif 27608 noextendlt 27609 noextendgt 27610 nosupbnd2lem1 27655 noetasuplem4 27676 ausgrumgri 29146 dfnbgr3 29317 wlkiswwlks1 29846 vdn0conngrumgrv2 30174 hlimf 31215 adj1o 31872 abrexdomjm 32485 iunpreima 32542 fresf1o 32611 unipreima 32623 xppreima 32625 suppiniseg 32665 fdifsuppconst 32668 ressupprn 32669 mptctf 32697 orvcval2 34470 fineqvac 35137 fullfunfnv 35986 fullfunfv 35987 abrexdom 37776 diaf11N 41094 dibf11N 41206 imadomfi 42041 gneispace3 44172 fresfo 47085 funbrafvb 47193 funopafvb 47194 funbrafv22b 47287 funopafv2b 47288 dfclnbgr3 47863 grimuhgr 47924 |
| Copyright terms: Public domain | W3C validator |