| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacosupp | Structured version Visualization version GIF version | ||
| Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| imacosupp | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppco 8146 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | |
| 2 | 1 | imaeq2d 6015 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍)))) |
| 3 | funforn 6747 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺:dom 𝐺–onto→ran 𝐺) | |
| 4 | foimacnv 6785 | . . . 4 ⊢ ((𝐺:dom 𝐺–onto→ran 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
| 5 | 3, 4 | sylanb 581 | . . 3 ⊢ ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) |
| 6 | 2, 5 | sylan9eq 2784 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍)) |
| 7 | 6 | ex 412 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ∘ ccom 5627 Fun wfun 6480 –onto→wfo 6484 (class class class)co 7353 supp csupp 8100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-supp 8101 |
| This theorem is referenced by: gsumval3lem1 19803 gsumval3lem2 19804 |
| Copyright terms: Public domain | W3C validator |