MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacosupp Structured version   Visualization version   GIF version

Theorem imacosupp 8208
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
imacosupp ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))

Proof of Theorem imacosupp
StepHypRef Expression
1 suppco 8205 . . . 4 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
21imaeq2d 6047 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))))
3 funforn 6797 . . . 4 (Fun 𝐺𝐺:dom 𝐺onto→ran 𝐺)
4 foimacnv 6835 . . . 4 ((𝐺:dom 𝐺onto→ran 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
53, 4sylanb 581 . . 3 ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
62, 5sylan9eq 2790 . 2 (((𝐹𝑉𝐺𝑊) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))
76ex 412 1 ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657  ccom 5658  Fun wfun 6525  ontowfo 6529  (class class class)co 7405   supp csupp 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-supp 8160
This theorem is referenced by:  gsumval3lem1  19886  gsumval3lem2  19887
  Copyright terms: Public domain W3C validator