| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacosupp | Structured version Visualization version GIF version | ||
| Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| imacosupp | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppco 8145 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | |
| 2 | 1 | imaeq2d 6016 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍)))) |
| 3 | funforn 6750 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺:dom 𝐺–onto→ran 𝐺) | |
| 4 | foimacnv 6788 | . . . 4 ⊢ ((𝐺:dom 𝐺–onto→ran 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
| 5 | 3, 4 | sylanb 581 | . . 3 ⊢ ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) |
| 6 | 2, 5 | sylan9eq 2788 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍)) |
| 7 | 6 | ex 412 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 ∘ ccom 5625 Fun wfun 6483 –onto→wfo 6487 (class class class)co 7355 supp csupp 8099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-supp 8100 |
| This theorem is referenced by: gsumval3lem1 19825 gsumval3lem2 19826 |
| Copyright terms: Public domain | W3C validator |