![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imacosupp | Structured version Visualization version GIF version |
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
imacosupp | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppco 7679 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡𝐺 “ (𝐹 supp 𝑍))) | |
2 | 1 | imaeq2d 5775 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍)))) |
3 | funforn 6431 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺:dom 𝐺–onto→ran 𝐺) | |
4 | foimacnv 6466 | . . . 4 ⊢ ((𝐺:dom 𝐺–onto→ran 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) | |
5 | 3, 4 | sylanb 573 | . . 3 ⊢ ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (◡𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍)) |
6 | 2, 5 | sylan9eq 2836 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍)) |
7 | 6 | ex 405 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ⊆ wss 3831 ◡ccnv 5410 dom cdm 5411 ran crn 5412 “ cima 5414 ∘ ccom 5415 Fun wfun 6187 –onto→wfo 6191 (class class class)co 6982 supp csupp 7639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-opab 4997 df-id 5316 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-fo 6199 df-fv 6201 df-ov 6985 df-oprab 6986 df-mpo 6987 df-supp 7640 |
This theorem is referenced by: gsumval3lem1 18791 gsumval3lem2 18792 |
Copyright terms: Public domain | W3C validator |