MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacosupp Structured version   Visualization version   GIF version

Theorem imacosupp 8165
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
imacosupp ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))

Proof of Theorem imacosupp
StepHypRef Expression
1 suppco 8162 . . . 4 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
21imaeq2d 6020 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))))
3 funforn 6761 . . . 4 (Fun 𝐺𝐺:dom 𝐺onto→ran 𝐺)
4 foimacnv 6799 . . . 4 ((𝐺:dom 𝐺onto→ran 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
53, 4sylanb 581 . . 3 ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
62, 5sylan9eq 2784 . 2 (((𝐹𝑉𝐺𝑊) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))
76ex 412 1 ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  Fun wfun 6493  ontowfo 6497  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  gsumval3lem1  19811  gsumval3lem2  19812
  Copyright terms: Public domain W3C validator