MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacosupp Structured version   Visualization version   GIF version

Theorem imacosupp 8134
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
imacosupp ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))

Proof of Theorem imacosupp
StepHypRef Expression
1 suppco 8131 . . . 4 ((𝐹𝑉𝐺𝑊) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
21imaeq2d 6004 . . 3 ((𝐹𝑉𝐺𝑊) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))))
3 funforn 6737 . . . 4 (Fun 𝐺𝐺:dom 𝐺onto→ran 𝐺)
4 foimacnv 6775 . . . 4 ((𝐺:dom 𝐺onto→ran 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
53, 4sylanb 581 . . 3 ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 supp 𝑍))) = (𝐹 supp 𝑍))
62, 5sylan9eq 2786 . 2 (((𝐹𝑉𝐺𝑊) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))
76ex 412 1 ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  ccnv 5610  dom cdm 5611  ran crn 5612  cima 5614  ccom 5615  Fun wfun 6470  ontowfo 6474  (class class class)co 7341   supp csupp 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-supp 8086
This theorem is referenced by:  gsumval3lem1  19812  gsumval3lem2  19813
  Copyright terms: Public domain W3C validator