Step | Hyp | Ref
| Expression |
1 | | fveq2 6662 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) |
2 | 1 | unieqd 4815 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → ∪ (𝑓‘𝑘) = ∪ (𝑓‘𝑥)) |
3 | 2 | pweqd 4516 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → 𝒫 ∪ (𝑓‘𝑘) = 𝒫 ∪
(𝑓‘𝑥)) |
4 | 3 | cbvixpv 8502 |
. . . . . . 7
⊢ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥) |
5 | 4 | eleq2i 2843 |
. . . . . 6
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) ↔ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) |
6 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑓:dom 𝑓⟶Top) |
7 | 6 | feqmptd 6725 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑓 = (𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) |
8 | 7 | fveq2d 6666 |
. . . . . . . . 9
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → (∏t‘𝑓) =
(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘)))) |
9 | 8 | fveq2d 6666 |
. . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
(cls‘(∏t‘𝑓)) =
(cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))) |
10 | 9 | fveq1d 6664 |
. . . . . . 7
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘))) |
11 | | eqid 2758 |
. . . . . . . 8
⊢
(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) |
12 | | vex 3413 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
13 | 12 | dmex 7626 |
. . . . . . . . 9
⊢ dom 𝑓 ∈ V |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → dom 𝑓 ∈ V) |
15 | 6 | ffvelrnda 6847 |
. . . . . . . . 9
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓‘𝑘) ∈ Top) |
16 | | toptopon2 21623 |
. . . . . . . . 9
⊢ ((𝑓‘𝑘) ∈ Top ↔ (𝑓‘𝑘) ∈ (TopOn‘∪ (𝑓‘𝑘))) |
17 | 15, 16 | sylib 221 |
. . . . . . . 8
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓‘𝑘) ∈ (TopOn‘∪ (𝑓‘𝑘))) |
18 | | simpr 488 |
. . . . . . . . . . . 12
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) |
19 | 18, 5 | sylibr 237 |
. . . . . . . . . . 11
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑠 ∈ X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)) |
20 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑠 ∈ V |
21 | 20 | elixp 8491 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) ↔ (𝑠 Fn dom 𝑓 ∧ ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘))) |
22 | 21 | simprbi 500 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) → ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) |
23 | 19, 22 | syl 17 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) |
24 | 23 | r19.21bi 3137 |
. . . . . . . . 9
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) |
25 | 24 | elpwid 4508 |
. . . . . . . 8
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠‘𝑘) ⊆ ∪ (𝑓‘𝑘)) |
26 | | fvex 6675 |
. . . . . . . . . 10
⊢ (𝑠‘𝑘) ∈ V |
27 | 13, 26 | iunex 7678 |
. . . . . . . . 9
⊢ ∪ 𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ V |
28 | | simpll 766 |
. . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
CHOICE) |
29 | | acacni 9605 |
. . . . . . . . . 10
⊢
((CHOICE ∧ dom 𝑓 ∈ V) → AC dom 𝑓 = V) |
30 | 28, 13, 29 | sylancl 589 |
. . . . . . . . 9
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → AC dom 𝑓 = V) |
31 | 27, 30 | eleqtrrid 2859 |
. . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → ∪
𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ AC dom 𝑓) |
32 | 11, 14, 17, 25, 31 | ptclsg 22320 |
. . . . . . 7
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
33 | 10, 32 | eqtrd 2793 |
. . . . . 6
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
34 | 5, 33 | sylan2b 596 |
. . . . 5
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
35 | 34 | ralrimiva 3113 |
. . . 4
⊢
((CHOICE ∧ 𝑓:dom 𝑓⟶Top) → ∀𝑠 ∈ X
𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
36 | 35 | ex 416 |
. . 3
⊢
(CHOICE → (𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |
37 | 36 | alrimiv 1928 |
. 2
⊢
(CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |
38 | | vex 3413 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
39 | 38 | dmex 7626 |
. . . . . . 7
⊢ dom 𝑔 ∈ V |
40 | 39 | a1i 11 |
. . . . . 6
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → dom 𝑔 ∈ V) |
41 | | fvex 6675 |
. . . . . . 7
⊢ (𝑔‘𝑥) ∈ V |
42 | 41 | a1i 11 |
. . . . . 6
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ∈ V) |
43 | | simplrr 777 |
. . . . . . . 8
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ∅ ∉ ran 𝑔) |
44 | | df-nel 3056 |
. . . . . . . 8
⊢ (∅
∉ ran 𝑔 ↔ ¬
∅ ∈ ran 𝑔) |
45 | 43, 44 | sylib 221 |
. . . . . . 7
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔) |
46 | | funforn 6587 |
. . . . . . . . . . . 12
⊢ (Fun
𝑔 ↔ 𝑔:dom 𝑔–onto→ran 𝑔) |
47 | | fof 6580 |
. . . . . . . . . . . 12
⊢ (𝑔:dom 𝑔–onto→ran 𝑔 → 𝑔:dom 𝑔⟶ran 𝑔) |
48 | 46, 47 | sylbi 220 |
. . . . . . . . . . 11
⊢ (Fun
𝑔 → 𝑔:dom 𝑔⟶ran 𝑔) |
49 | 48 | ad2antrl 727 |
. . . . . . . . . 10
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔:dom 𝑔⟶ran 𝑔) |
50 | 49 | ffvelrnda 6847 |
. . . . . . . . 9
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ∈ ran 𝑔) |
51 | | eleq1 2839 |
. . . . . . . . 9
⊢ ((𝑔‘𝑥) = ∅ → ((𝑔‘𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔)) |
52 | 50, 51 | syl5ibcom 248 |
. . . . . . . 8
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔‘𝑥) = ∅ → ∅ ∈ ran 𝑔)) |
53 | 52 | necon3bd 2965 |
. . . . . . 7
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔‘𝑥) ≠ ∅)) |
54 | 45, 53 | mpd 15 |
. . . . . 6
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ≠ ∅) |
55 | | eqid 2758 |
. . . . . 6
⊢ 𝒫
∪ (𝑔‘𝑥) = 𝒫 ∪
(𝑔‘𝑥) |
56 | | eqid 2758 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} |
57 | | eqid 2758 |
. . . . . 6
⊢
(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
58 | | fveq1 6661 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑔 → (𝑠‘𝑘) = (𝑔‘𝑘)) |
59 | 58 | ixpeq2dv 8500 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔(𝑠‘𝑘) = X𝑘 ∈ dom 𝑔(𝑔‘𝑘)) |
60 | | fveq2 6662 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → (𝑔‘𝑘) = (𝑔‘𝑥)) |
61 | 60 | cbvixpv 8502 |
. . . . . . . . . 10
⊢ X𝑘 ∈
dom 𝑔(𝑔‘𝑘) = X𝑥 ∈ dom 𝑔(𝑔‘𝑥) |
62 | 59, 61 | eqtrdi 2809 |
. . . . . . . . 9
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔(𝑠‘𝑘) = X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) |
63 | 62 | fveq2d 6666 |
. . . . . . . 8
⊢ (𝑠 = 𝑔 →
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥))) |
64 | 58 | fveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑔 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘))) |
65 | 64 | ixpeq2dv 8500 |
. . . . . . . . 9
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘))) |
66 | 60 | unieqd 4815 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → ∪ (𝑔‘𝑘) = ∪ (𝑔‘𝑥)) |
67 | 66 | pweqd 4516 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → 𝒫 ∪ (𝑔‘𝑘) = 𝒫 ∪
(𝑔‘𝑥)) |
68 | 67 | sneqd 4537 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → {𝒫 ∪ (𝑔‘𝑘)} = {𝒫 ∪
(𝑔‘𝑥)}) |
69 | 60, 68 | uneq12d 4071 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) |
70 | 69 | pweqd 4516 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑥 → 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) |
71 | 67 | eleq1d 2836 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 ↔ 𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦)) |
72 | 69 | eqeq2d 2769 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → (𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))) |
73 | 71, 72 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑥 → ((𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) ↔ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})))) |
74 | 70, 73 | rabeqbidv 3398 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑥 → {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) |
75 | 74 | fveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) = (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
76 | 75, 60 | fveq12d 6669 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑥 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) |
77 | 76 | cbvixpv 8502 |
. . . . . . . . 9
⊢ X𝑘 ∈
dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥)) |
78 | 65, 77 | eqtrdi 2809 |
. . . . . . . 8
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) |
79 | 63, 78 | eqeq12d 2774 |
. . . . . . 7
⊢ (𝑠 = 𝑔 →
(((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) ↔
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥)))) |
80 | | simpl 486 |
. . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |
81 | | snex 5303 |
. . . . . . . . . . . . 13
⊢
{𝒫 ∪ (𝑔‘𝑥)} ∈ V |
82 | 41, 81 | unex 7472 |
. . . . . . . . . . . 12
⊢ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V |
83 | | ssun2 4080 |
. . . . . . . . . . . . 13
⊢
{𝒫 ∪ (𝑔‘𝑥)} ⊆ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) |
84 | 41 | uniex 7470 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝑔‘𝑥) ∈ V |
85 | 84 | pwex 5252 |
. . . . . . . . . . . . . 14
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ V |
86 | 85 | snid 4561 |
. . . . . . . . . . . . 13
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ {𝒫 ∪ (𝑔‘𝑥)} |
87 | 83, 86 | sselii 3891 |
. . . . . . . . . . . 12
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) |
88 | | epttop 21714 |
. . . . . . . . . . . 12
⊢ ((((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V ∧ 𝒫 ∪ (𝑔‘𝑥) ∈ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ (TopOn‘((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))) |
89 | 82, 87, 88 | mp2an 691 |
. . . . . . . . . . 11
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ (TopOn‘((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) |
90 | 89 | topontopi 21620 |
. . . . . . . . . 10
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ Top |
91 | 90 | a1i 11 |
. . . . . . . . 9
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ Top) |
92 | 91 | fmpttd 6875 |
. . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top) |
93 | 39 | mptex 6982 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∈ V |
94 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → 𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
95 | | dmeq 5748 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → dom 𝑓 = dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) |
96 | 82 | pwex 5252 |
. . . . . . . . . . . . . 14
⊢ 𝒫
((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V |
97 | 96 | rabex 5205 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ V |
98 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) |
99 | 97, 98 | dmmpti 6479 |
. . . . . . . . . . . 12
⊢ dom
(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) = dom 𝑔 |
100 | 95, 99 | eqtrdi 2809 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → dom 𝑓 = dom 𝑔) |
101 | 94, 100 | feq12d 6490 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (𝑓:dom 𝑓⟶Top ↔ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top)) |
102 | 100 | ixpeq1d 8496 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ∪ (𝑓‘𝑘)) |
103 | | fveq1 6661 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (𝑓‘𝑘) = ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘𝑘)) |
104 | | fveq2 6662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑘 → (𝑔‘𝑥) = (𝑔‘𝑘)) |
105 | 104 | unieqd 4815 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑘 → ∪ (𝑔‘𝑥) = ∪ (𝑔‘𝑘)) |
106 | 105 | pweqd 4516 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑘 → 𝒫 ∪ (𝑔‘𝑥) = 𝒫 ∪
(𝑔‘𝑘)) |
107 | 106 | sneqd 4537 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑘 → {𝒫 ∪ (𝑔‘𝑥)} = {𝒫 ∪
(𝑔‘𝑘)}) |
108 | 104, 107 | uneq12d 4071 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
109 | 108 | pweqd 4516 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) = 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
110 | 106 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 ↔ 𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦)) |
111 | 108 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ↔ 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) |
112 | 110, 111 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → ((𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) ↔ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})))) |
113 | 109, 112 | rabeqbidv 3398 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑘 → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
114 | | fvex 6675 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔‘𝑘) ∈ V |
115 | | snex 5303 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
{𝒫 ∪ (𝑔‘𝑘)} ∈ V |
116 | 114, 115 | unex 7472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V |
117 | 116 | pwex 5252 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝒫
((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V |
118 | 117 | rabex 5205 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ V |
119 | 113, 98, 118 | fvmpt 6763 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ dom 𝑔 → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
120 | 103, 119 | sylan9eq 2813 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
121 | 120 | unieqd 4815 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ∪ (𝑓‘𝑘) = ∪ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) |
122 | | ssun2 4080 |
. . . . . . . . . . . . . . . . . 18
⊢
{𝒫 ∪ (𝑔‘𝑘)} ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
123 | 114 | uniex 7470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ (𝑔‘𝑘) ∈ V |
124 | 123 | pwex 5252 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ V |
125 | 124 | snid 4561 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ {𝒫 ∪ (𝑔‘𝑘)} |
126 | 122, 125 | sselii 3891 |
. . . . . . . . . . . . . . . . 17
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
127 | | epttop 21714 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V ∧ 𝒫 ∪ (𝑔‘𝑘) ∈ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) → {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ (TopOn‘((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) |
128 | 116, 126,
127 | mp2an 691 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ (TopOn‘((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
129 | 128 | toponunii 21621 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = ∪ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} |
130 | 121, 129 | eqtr4di 2811 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ∪ (𝑓‘𝑘) = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
131 | 130 | pweqd 4516 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → 𝒫 ∪ (𝑓‘𝑘) = 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
132 | 131 | ixpeq2dva 8499 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑔𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
133 | 102, 132 | eqtrd 2793 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
134 | | 2fveq3 6667 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
(cls‘(∏t‘𝑓)) =
(cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))) |
135 | 100 | ixpeq1d 8496 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓(𝑠‘𝑘) = X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) |
136 | 134, 135 | fveq12d 6669 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘))) |
137 | 100 | ixpeq1d 8496 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) |
138 | 120 | fveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (cls‘(𝑓‘𝑘)) = (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})) |
139 | 138 | fveq1d 6664 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
140 | 139 | ixpeq2dva 8499 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑔((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
141 | 137, 140 | eqtrd 2793 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
142 | 136, 141 | eqeq12d 2774 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
(((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) ↔
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) |
143 | 133, 142 | raleqbidv 3319 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) ↔ ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) |
144 | 101, 143 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → ((𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ↔ ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘))))) |
145 | 93, 144 | spcv 3526 |
. . . . . . . 8
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) |
146 | 80, 92, 145 | sylc 65 |
. . . . . . 7
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘))) |
147 | | simprl 770 |
. . . . . . . . 9
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → Fun 𝑔) |
148 | 147 | funfnd 6370 |
. . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 Fn dom 𝑔) |
149 | | ssun1 4079 |
. . . . . . . . . 10
⊢ (𝑔‘𝑘) ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
150 | 114 | elpw 4501 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ (𝑔‘𝑘) ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
151 | 149, 150 | mpbir 234 |
. . . . . . . . 9
⊢ (𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
152 | 151 | rgenw 3082 |
. . . . . . . 8
⊢
∀𝑘 ∈ dom
𝑔(𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) |
153 | 38 | elixp 8491 |
. . . . . . . 8
⊢ (𝑔 ∈ X𝑘 ∈
dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ (𝑔 Fn dom 𝑔 ∧ ∀𝑘 ∈ dom 𝑔(𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) |
154 | 148, 152,
153 | sylanblrc 593 |
. . . . . . 7
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 ∈ X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) |
155 | 79, 146, 154 | rspcdva 3545 |
. . . . . 6
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) →
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) |
156 | 40, 42, 54, 55, 56, 57, 155 | dfac14lem 22322 |
. . . . 5
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅) |
157 | 156 | ex 416 |
. . . 4
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) |
158 | 157 | alrimiv 1928 |
. . 3
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) |
159 | | dfac9 9601 |
. . 3
⊢
(CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) |
160 | 158, 159 | sylibr 237 |
. 2
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) →
CHOICE) |
161 | 37, 160 | impbii 212 |
1
⊢
(CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |