MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14 Structured version   Visualization version   GIF version

Theorem dfac14 23538
Description: Theorem ptcls 23536 is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac14 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
Distinct variable group:   𝑓,𝑘,𝑠

Proof of Theorem dfac14
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
21unieqd 4880 . . . . . . . . 9 (𝑘 = 𝑥 (𝑓𝑘) = (𝑓𝑥))
32pweqd 4576 . . . . . . . 8 (𝑘 = 𝑥 → 𝒫 (𝑓𝑘) = 𝒫 (𝑓𝑥))
43cbvixpv 8865 . . . . . . 7 X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)
54eleq2i 2820 . . . . . 6 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) ↔ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥))
6 simplr 768 . . . . . . . . . . 11 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑓:dom 𝑓⟶Top)
76feqmptd 6911 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑓 = (𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))
87fveq2d 6844 . . . . . . . . 9 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → (∏t𝑓) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))
98fveq2d 6844 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → (cls‘(∏t𝑓)) = (cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))))
109fveq1d 6842 . . . . . . 7 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = ((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)))
11 eqid 2729 . . . . . . . 8 (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))
12 vex 3448 . . . . . . . . . 10 𝑓 ∈ V
1312dmex 7865 . . . . . . . . 9 dom 𝑓 ∈ V
1413a1i 11 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → dom 𝑓 ∈ V)
156ffvelcdmda 7038 . . . . . . . . 9 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓𝑘) ∈ Top)
16 toptopon2 22838 . . . . . . . . 9 ((𝑓𝑘) ∈ Top ↔ (𝑓𝑘) ∈ (TopOn‘ (𝑓𝑘)))
1715, 16sylib 218 . . . . . . . 8 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓𝑘) ∈ (TopOn‘ (𝑓𝑘)))
18 simpr 484 . . . . . . . . . . . 12 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥))
1918, 5sylibr 234 . . . . . . . . . . 11 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘))
20 vex 3448 . . . . . . . . . . . . 13 𝑠 ∈ V
2120elixp 8854 . . . . . . . . . . . 12 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) ↔ (𝑠 Fn dom 𝑓 ∧ ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘)))
2221simprbi 496 . . . . . . . . . . 11 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) → ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2319, 22syl 17 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2423r19.21bi 3227 . . . . . . . . 9 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2524elpwid 4568 . . . . . . . 8 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠𝑘) ⊆ (𝑓𝑘))
26 fvex 6853 . . . . . . . . . 10 (𝑠𝑘) ∈ V
2713, 26iunex 7926 . . . . . . . . 9 𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ V
28 simpll 766 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → CHOICE)
29 acacni 10070 . . . . . . . . . 10 ((CHOICE ∧ dom 𝑓 ∈ V) → AC dom 𝑓 = V)
3028, 13, 29sylancl 586 . . . . . . . . 9 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → AC dom 𝑓 = V)
3127, 30eleqtrrid 2835 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ AC dom 𝑓)
3211, 14, 17, 25, 31ptclsg 23535 . . . . . . 7 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3310, 32eqtrd 2764 . . . . . 6 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
345, 33sylan2b 594 . . . . 5 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3534ralrimiva 3125 . . . 4 ((CHOICE𝑓:dom 𝑓⟶Top) → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3635ex 412 . . 3 (CHOICE → (𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
3736alrimiv 1927 . 2 (CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
38 vex 3448 . . . . . . . 8 𝑔 ∈ V
3938dmex 7865 . . . . . . 7 dom 𝑔 ∈ V
4039a1i 11 . . . . . 6 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → dom 𝑔 ∈ V)
41 fvex 6853 . . . . . . 7 (𝑔𝑥) ∈ V
4241a1i 11 . . . . . 6 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ V)
43 simplrr 777 . . . . . . . 8 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ∅ ∉ ran 𝑔)
44 df-nel 3030 . . . . . . . 8 (∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔)
4543, 44sylib 218 . . . . . . 7 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔)
46 funforn 6761 . . . . . . . . . . . 12 (Fun 𝑔𝑔:dom 𝑔onto→ran 𝑔)
47 fof 6754 . . . . . . . . . . . 12 (𝑔:dom 𝑔onto→ran 𝑔𝑔:dom 𝑔⟶ran 𝑔)
4846, 47sylbi 217 . . . . . . . . . . 11 (Fun 𝑔𝑔:dom 𝑔⟶ran 𝑔)
4948ad2antrl 728 . . . . . . . . . 10 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔:dom 𝑔⟶ran 𝑔)
5049ffvelcdmda 7038 . . . . . . . . 9 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
51 eleq1 2816 . . . . . . . . 9 ((𝑔𝑥) = ∅ → ((𝑔𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔))
5250, 51syl5ibcom 245 . . . . . . . 8 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔𝑥) = ∅ → ∅ ∈ ran 𝑔))
5352necon3bd 2939 . . . . . . 7 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔𝑥) ≠ ∅))
5445, 53mpd 15 . . . . . 6 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
55 eqid 2729 . . . . . 6 𝒫 (𝑔𝑥) = 𝒫 (𝑔𝑥)
56 eqid 2729 . . . . . 6 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}
57 eqid 2729 . . . . . 6 (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
58 fveq1 6839 . . . . . . . . . . 11 (𝑠 = 𝑔 → (𝑠𝑘) = (𝑔𝑘))
5958ixpeq2dv 8863 . . . . . . . . . 10 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔(𝑠𝑘) = X𝑘 ∈ dom 𝑔(𝑔𝑘))
60 fveq2 6840 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝑔𝑘) = (𝑔𝑥))
6160cbvixpv 8865 . . . . . . . . . 10 X𝑘 ∈ dom 𝑔(𝑔𝑘) = X𝑥 ∈ dom 𝑔(𝑔𝑥)
6259, 61eqtrdi 2780 . . . . . . . . 9 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔(𝑠𝑘) = X𝑥 ∈ dom 𝑔(𝑔𝑥))
6362fveq2d 6844 . . . . . . . 8 (𝑠 = 𝑔 → ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)))
6458fveq2d 6844 . . . . . . . . . 10 (𝑠 = 𝑔 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)))
6564ixpeq2dv 8863 . . . . . . . . 9 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)))
6660unieqd 4880 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 (𝑔𝑘) = (𝑔𝑥))
6766pweqd 4576 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑥 → 𝒫 (𝑔𝑘) = 𝒫 (𝑔𝑥))
6867sneqd 4597 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → {𝒫 (𝑔𝑘)} = {𝒫 (𝑔𝑥)})
6960, 68uneq12d 4128 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
7069pweqd 4576 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
7167eleq1d 2813 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝒫 (𝑔𝑘) ∈ 𝑦 ↔ 𝒫 (𝑔𝑥) ∈ 𝑦))
7269eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ 𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})))
7371, 72imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → ((𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})) ↔ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))))
7470, 73rabeqbidv 3421 . . . . . . . . . . . 12 (𝑘 = 𝑥 → {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})
7574fveq2d 6844 . . . . . . . . . . 11 (𝑘 = 𝑥 → (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}) = (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
7675, 60fveq12d 6847 . . . . . . . . . 10 (𝑘 = 𝑥 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
7776cbvixpv 8865 . . . . . . . . 9 X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥))
7865, 77eqtrdi 2780 . . . . . . . 8 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
7963, 78eqeq12d 2745 . . . . . . 7 (𝑠 = 𝑔 → (((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) ↔ ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥))))
80 simpl 482 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
81 snex 5386 . . . . . . . . . . . . 13 {𝒫 (𝑔𝑥)} ∈ V
8241, 81unex 7700 . . . . . . . . . . . 12 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V
83 ssun2 4138 . . . . . . . . . . . . 13 {𝒫 (𝑔𝑥)} ⊆ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})
8441uniex 7697 . . . . . . . . . . . . . . 15 (𝑔𝑥) ∈ V
8584pwex 5330 . . . . . . . . . . . . . 14 𝒫 (𝑔𝑥) ∈ V
8685snid 4622 . . . . . . . . . . . . 13 𝒫 (𝑔𝑥) ∈ {𝒫 (𝑔𝑥)}
8783, 86sselii 3940 . . . . . . . . . . . 12 𝒫 (𝑔𝑥) ∈ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})
88 epttop 22929 . . . . . . . . . . . 12 ((((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V ∧ 𝒫 (𝑔𝑥) ∈ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})) → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ (TopOn‘((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})))
8982, 87, 88mp2an 692 . . . . . . . . . . 11 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ (TopOn‘((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
9089topontopi 22835 . . . . . . . . . 10 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ Top
9190a1i 11 . . . . . . . . 9 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ Top)
9291fmpttd 7069 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top)
9339mptex 7179 . . . . . . . . 9 (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∈ V
94 id 22 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → 𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
95 dmeq 5857 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → dom 𝑓 = dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
9682pwex 5330 . . . . . . . . . . . . . 14 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V
9796rabex 5289 . . . . . . . . . . . . 13 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ V
98 eqid 2729 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})
9997, 98dmmpti 6644 . . . . . . . . . . . 12 dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) = dom 𝑔
10095, 99eqtrdi 2780 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → dom 𝑓 = dom 𝑔)
10194, 100feq12d 6658 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (𝑓:dom 𝑓⟶Top ↔ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top))
102100ixpeq1d 8859 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 (𝑓𝑘))
103 fveq1 6839 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (𝑓𝑘) = ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘𝑘))
104 fveq2 6840 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
105104unieqd 4880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑘 (𝑔𝑥) = (𝑔𝑘))
106105pweqd 4576 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑘 → 𝒫 (𝑔𝑥) = 𝒫 (𝑔𝑘))
107106sneqd 4597 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑘 → {𝒫 (𝑔𝑥)} = {𝒫 (𝑔𝑘)})
108104, 107uneq12d 4128 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
109108pweqd 4576 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) = 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
110106eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → (𝒫 (𝑔𝑥) ∈ 𝑦 ↔ 𝒫 (𝑔𝑘) ∈ 𝑦))
111108eqeq2d 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → (𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ↔ 𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
112110, 111imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → ((𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})) ↔ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))))
113109, 112rabeqbidv 3421 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
114 fvex 6853 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑘) ∈ V
115 snex 5386 . . . . . . . . . . . . . . . . . . . . 21 {𝒫 (𝑔𝑘)} ∈ V
116114, 115unex 7700 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V
117116pwex 5330 . . . . . . . . . . . . . . . . . . 19 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V
118117rabex 5289 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ V
119113, 98, 118fvmpt 6950 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ dom 𝑔 → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
120103, 119sylan9eq 2784 . . . . . . . . . . . . . . . 16 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
121120unieqd 4880 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
122 ssun2 4138 . . . . . . . . . . . . . . . . . 18 {𝒫 (𝑔𝑘)} ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
123114uniex 7697 . . . . . . . . . . . . . . . . . . . 20 (𝑔𝑘) ∈ V
124123pwex 5330 . . . . . . . . . . . . . . . . . . 19 𝒫 (𝑔𝑘) ∈ V
125124snid 4622 . . . . . . . . . . . . . . . . . 18 𝒫 (𝑔𝑘) ∈ {𝒫 (𝑔𝑘)}
126122, 125sselii 3940 . . . . . . . . . . . . . . . . 17 𝒫 (𝑔𝑘) ∈ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
127 epttop 22929 . . . . . . . . . . . . . . . . 17 ((((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V ∧ 𝒫 (𝑔𝑘) ∈ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})) → {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ (TopOn‘((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
128116, 126, 127mp2an 692 . . . . . . . . . . . . . . . 16 {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ (TopOn‘((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
129128toponunii 22836 . . . . . . . . . . . . . . 15 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}
130121, 129eqtr4di 2782 . . . . . . . . . . . . . 14 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
131130pweqd 4576 . . . . . . . . . . . . 13 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → 𝒫 (𝑓𝑘) = 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
132131ixpeq2dva 8862 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑔𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
133102, 132eqtrd 2764 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
134 2fveq3 6845 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (cls‘(∏t𝑓)) = (cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))))
135100ixpeq1d 8859 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓(𝑠𝑘) = X𝑘 ∈ dom 𝑔(𝑠𝑘))
136134, 135fveq12d 6847 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)))
137100ixpeq1d 8859 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘(𝑓𝑘))‘(𝑠𝑘)))
138120fveq2d 6844 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (cls‘(𝑓𝑘)) = (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}))
139138fveq1d 6842 . . . . . . . . . . . . . 14 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ((cls‘(𝑓𝑘))‘(𝑠𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
140139ixpeq2dva 8862 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑔((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
141137, 140eqtrd 2764 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
142136, 141eqeq12d 2745 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) ↔ ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
143133, 142raleqbidv 3316 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) ↔ ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
144101, 143imbi12d 344 . . . . . . . . 9 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → ((𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ↔ ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))))
14593, 144spcv 3568 . . . . . . . 8 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
14680, 92, 145sylc 65 . . . . . . 7 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
147 simprl 770 . . . . . . . . 9 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → Fun 𝑔)
148147funfnd 6531 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 Fn dom 𝑔)
149 ssun1 4137 . . . . . . . . . 10 (𝑔𝑘) ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
150114elpw 4563 . . . . . . . . . 10 ((𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ (𝑔𝑘) ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
151149, 150mpbir 231 . . . . . . . . 9 (𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
152151rgenw 3048 . . . . . . . 8 𝑘 ∈ dom 𝑔(𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
15338elixp 8854 . . . . . . . 8 (𝑔X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ (𝑔 Fn dom 𝑔 ∧ ∀𝑘 ∈ dom 𝑔(𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
154148, 152, 153sylanblrc 590 . . . . . . 7 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
15579, 146, 154rspcdva 3586 . . . . . 6 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
15640, 42, 54, 55, 56, 57, 155dfac14lem 23537 . . . . 5 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅)
157156ex 412 . . . 4 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
158157alrimiv 1927 . . 3 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
159 dfac9 10066 . . 3 (CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
160158, 159sylibr 234 . 2 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → CHOICE)
16137, 160impbii 209 1 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  {crab 3402  Vcvv 3444  cun 3909  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cuni 4867   ciun 4951  cmpt 5183  dom cdm 5631  ran crn 5632  Fun wfun 6493   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  Xcixp 8847  AC wacn 9867  CHOICEwac 10044  tcpt 17377  Topctop 22813  TopOnctopon 22830  clsccl 22938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-fin 8899  df-fi 9338  df-card 9868  df-acn 9871  df-ac 10045  df-topgen 17382  df-pt 17383  df-top 22814  df-topon 22831  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator