| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) | 
| 2 | 1 | unieqd 4919 | . . . . . . . . 9
⊢ (𝑘 = 𝑥 → ∪ (𝑓‘𝑘) = ∪ (𝑓‘𝑥)) | 
| 3 | 2 | pweqd 4616 | . . . . . . . 8
⊢ (𝑘 = 𝑥 → 𝒫 ∪ (𝑓‘𝑘) = 𝒫 ∪
(𝑓‘𝑥)) | 
| 4 | 3 | cbvixpv 8956 | . . . . . . 7
⊢ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥) | 
| 5 | 4 | eleq2i 2832 | . . . . . 6
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) ↔ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) | 
| 6 |  | simplr 768 | . . . . . . . . . . 11
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑓:dom 𝑓⟶Top) | 
| 7 | 6 | feqmptd 6976 | . . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑓 = (𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) | 
| 8 | 7 | fveq2d 6909 | . . . . . . . . 9
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → (∏t‘𝑓) =
(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘)))) | 
| 9 | 8 | fveq2d 6909 | . . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
(cls‘(∏t‘𝑓)) =
(cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))) | 
| 10 | 9 | fveq1d 6907 | . . . . . . 7
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘))) | 
| 11 |  | eqid 2736 | . . . . . . . 8
⊢
(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))) | 
| 12 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑓 ∈ V | 
| 13 | 12 | dmex 7932 | . . . . . . . . 9
⊢ dom 𝑓 ∈ V | 
| 14 | 13 | a1i 11 | . . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → dom 𝑓 ∈ V) | 
| 15 | 6 | ffvelcdmda 7103 | . . . . . . . . 9
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓‘𝑘) ∈ Top) | 
| 16 |  | toptopon2 22925 | . . . . . . . . 9
⊢ ((𝑓‘𝑘) ∈ Top ↔ (𝑓‘𝑘) ∈ (TopOn‘∪ (𝑓‘𝑘))) | 
| 17 | 15, 16 | sylib 218 | . . . . . . . 8
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓‘𝑘) ∈ (TopOn‘∪ (𝑓‘𝑘))) | 
| 18 |  | simpr 484 | . . . . . . . . . . . 12
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) | 
| 19 | 18, 5 | sylibr 234 | . . . . . . . . . . 11
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → 𝑠 ∈ X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)) | 
| 20 |  | vex 3483 | . . . . . . . . . . . . 13
⊢ 𝑠 ∈ V | 
| 21 | 20 | elixp 8945 | . . . . . . . . . . . 12
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) ↔ (𝑠 Fn dom 𝑓 ∧ ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘))) | 
| 22 | 21 | simprbi 496 | . . . . . . . . . . 11
⊢ (𝑠 ∈ X𝑘 ∈
dom 𝑓𝒫 ∪ (𝑓‘𝑘) → ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) | 
| 23 | 19, 22 | syl 17 | . . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → ∀𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) | 
| 24 | 23 | r19.21bi 3250 | . . . . . . . . 9
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠‘𝑘) ∈ 𝒫 ∪ (𝑓‘𝑘)) | 
| 25 | 24 | elpwid 4608 | . . . . . . . 8
⊢
((((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠‘𝑘) ⊆ ∪ (𝑓‘𝑘)) | 
| 26 |  | fvex 6918 | . . . . . . . . . 10
⊢ (𝑠‘𝑘) ∈ V | 
| 27 | 13, 26 | iunex 7994 | . . . . . . . . 9
⊢ ∪ 𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ V | 
| 28 |  | simpll 766 | . . . . . . . . . 10
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
CHOICE) | 
| 29 |  | acacni 10182 | . . . . . . . . . 10
⊢
((CHOICE ∧ dom 𝑓 ∈ V) → AC dom 𝑓 = V) | 
| 30 | 28, 13, 29 | sylancl 586 | . . . . . . . . 9
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → AC dom 𝑓 = V) | 
| 31 | 27, 30 | eleqtrrid 2847 | . . . . . . . 8
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) → ∪
𝑘 ∈ dom 𝑓(𝑠‘𝑘) ∈ AC dom 𝑓) | 
| 32 | 11, 14, 17, 25, 31 | ptclsg 23624 | . . . . . . 7
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓‘𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) | 
| 33 | 10, 32 | eqtrd 2776 | . . . . . 6
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑥 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑥)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) | 
| 34 | 5, 33 | sylan2b 594 | . . . . 5
⊢
(((CHOICE ∧ 𝑓:dom 𝑓⟶Top) ∧ 𝑠 ∈ X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) | 
| 35 | 34 | ralrimiva 3145 | . . . 4
⊢
((CHOICE ∧ 𝑓:dom 𝑓⟶Top) → ∀𝑠 ∈ X
𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) | 
| 36 | 35 | ex 412 | . . 3
⊢
(CHOICE → (𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) | 
| 37 | 36 | alrimiv 1926 | . 2
⊢
(CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) | 
| 38 |  | vex 3483 | . . . . . . . 8
⊢ 𝑔 ∈ V | 
| 39 | 38 | dmex 7932 | . . . . . . 7
⊢ dom 𝑔 ∈ V | 
| 40 | 39 | a1i 11 | . . . . . 6
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → dom 𝑔 ∈ V) | 
| 41 |  | fvex 6918 | . . . . . . 7
⊢ (𝑔‘𝑥) ∈ V | 
| 42 | 41 | a1i 11 | . . . . . 6
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ∈ V) | 
| 43 |  | simplrr 777 | . . . . . . . 8
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ∅ ∉ ran 𝑔) | 
| 44 |  | df-nel 3046 | . . . . . . . 8
⊢ (∅
∉ ran 𝑔 ↔ ¬
∅ ∈ ran 𝑔) | 
| 45 | 43, 44 | sylib 218 | . . . . . . 7
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔) | 
| 46 |  | funforn 6826 | . . . . . . . . . . . 12
⊢ (Fun
𝑔 ↔ 𝑔:dom 𝑔–onto→ran 𝑔) | 
| 47 |  | fof 6819 | . . . . . . . . . . . 12
⊢ (𝑔:dom 𝑔–onto→ran 𝑔 → 𝑔:dom 𝑔⟶ran 𝑔) | 
| 48 | 46, 47 | sylbi 217 | . . . . . . . . . . 11
⊢ (Fun
𝑔 → 𝑔:dom 𝑔⟶ran 𝑔) | 
| 49 | 48 | ad2antrl 728 | . . . . . . . . . 10
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔:dom 𝑔⟶ran 𝑔) | 
| 50 | 49 | ffvelcdmda 7103 | . . . . . . . . 9
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ∈ ran 𝑔) | 
| 51 |  | eleq1 2828 | . . . . . . . . 9
⊢ ((𝑔‘𝑥) = ∅ → ((𝑔‘𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔)) | 
| 52 | 50, 51 | syl5ibcom 245 | . . . . . . . 8
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔‘𝑥) = ∅ → ∅ ∈ ran 𝑔)) | 
| 53 | 52 | necon3bd 2953 | . . . . . . 7
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔‘𝑥) ≠ ∅)) | 
| 54 | 45, 53 | mpd 15 | . . . . . 6
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔‘𝑥) ≠ ∅) | 
| 55 |  | eqid 2736 | . . . . . 6
⊢ 𝒫
∪ (𝑔‘𝑥) = 𝒫 ∪
(𝑔‘𝑥) | 
| 56 |  | eqid 2736 | . . . . . 6
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} | 
| 57 |  | eqid 2736 | . . . . . 6
⊢
(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) | 
| 58 |  | fveq1 6904 | . . . . . . . . . . 11
⊢ (𝑠 = 𝑔 → (𝑠‘𝑘) = (𝑔‘𝑘)) | 
| 59 | 58 | ixpeq2dv 8954 | . . . . . . . . . 10
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔(𝑠‘𝑘) = X𝑘 ∈ dom 𝑔(𝑔‘𝑘)) | 
| 60 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → (𝑔‘𝑘) = (𝑔‘𝑥)) | 
| 61 | 60 | cbvixpv 8956 | . . . . . . . . . 10
⊢ X𝑘 ∈
dom 𝑔(𝑔‘𝑘) = X𝑥 ∈ dom 𝑔(𝑔‘𝑥) | 
| 62 | 59, 61 | eqtrdi 2792 | . . . . . . . . 9
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔(𝑠‘𝑘) = X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) | 
| 63 | 62 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑠 = 𝑔 →
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥))) | 
| 64 | 58 | fveq2d 6909 | . . . . . . . . . 10
⊢ (𝑠 = 𝑔 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘))) | 
| 65 | 64 | ixpeq2dv 8954 | . . . . . . . . 9
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘))) | 
| 66 | 60 | unieqd 4919 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → ∪ (𝑔‘𝑘) = ∪ (𝑔‘𝑥)) | 
| 67 | 66 | pweqd 4616 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑥 → 𝒫 ∪ (𝑔‘𝑘) = 𝒫 ∪
(𝑔‘𝑥)) | 
| 68 | 67 | sneqd 4637 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → {𝒫 ∪ (𝑔‘𝑘)} = {𝒫 ∪
(𝑔‘𝑥)}) | 
| 69 | 60, 68 | uneq12d 4168 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) | 
| 70 | 69 | pweqd 4616 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑥 → 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) | 
| 71 | 67 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 ↔ 𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦)) | 
| 72 | 69 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑥 → (𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))) | 
| 73 | 71, 72 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑥 → ((𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) ↔ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})))) | 
| 74 | 70, 73 | rabeqbidv 3454 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑥 → {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) | 
| 75 | 74 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑥 → (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) = (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) | 
| 76 | 75, 60 | fveq12d 6912 | . . . . . . . . . 10
⊢ (𝑘 = 𝑥 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) | 
| 77 | 76 | cbvixpv 8956 | . . . . . . . . 9
⊢ X𝑘 ∈
dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑔‘𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥)) | 
| 78 | 65, 77 | eqtrdi 2792 | . . . . . . . 8
⊢ (𝑠 = 𝑔 → X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) | 
| 79 | 63, 78 | eqeq12d 2752 | . . . . . . 7
⊢ (𝑠 = 𝑔 →
(((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)) ↔
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥)))) | 
| 80 |  | simpl 482 | . . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) | 
| 81 |  | snex 5435 | . . . . . . . . . . . . 13
⊢
{𝒫 ∪ (𝑔‘𝑥)} ∈ V | 
| 82 | 41, 81 | unex 7765 | . . . . . . . . . . . 12
⊢ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V | 
| 83 |  | ssun2 4178 | . . . . . . . . . . . . 13
⊢
{𝒫 ∪ (𝑔‘𝑥)} ⊆ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) | 
| 84 | 41 | uniex 7762 | . . . . . . . . . . . . . . 15
⊢ ∪ (𝑔‘𝑥) ∈ V | 
| 85 | 84 | pwex 5379 | . . . . . . . . . . . . . 14
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ V | 
| 86 | 85 | snid 4661 | . . . . . . . . . . . . 13
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ {𝒫 ∪ (𝑔‘𝑥)} | 
| 87 | 83, 86 | sselii 3979 | . . . . . . . . . . . 12
⊢ 𝒫
∪ (𝑔‘𝑥) ∈ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) | 
| 88 |  | epttop 23017 | . . . . . . . . . . . 12
⊢ ((((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V ∧ 𝒫 ∪ (𝑔‘𝑥) ∈ ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ (TopOn‘((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))) | 
| 89 | 82, 87, 88 | mp2an 692 | . . . . . . . . . . 11
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ (TopOn‘((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) | 
| 90 | 89 | topontopi 22922 | . . . . . . . . . 10
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ Top | 
| 91 | 90 | a1i 11 | . . . . . . . . 9
⊢
(((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ Top) | 
| 92 | 91 | fmpttd 7134 | . . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top) | 
| 93 | 39 | mptex 7244 | . . . . . . . . 9
⊢ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∈ V | 
| 94 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → 𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) | 
| 95 |  | dmeq 5913 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → dom 𝑓 = dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})) | 
| 96 | 82 | pwex 5379 | . . . . . . . . . . . . . 14
⊢ 𝒫
((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∈ V | 
| 97 | 96 | rabex 5338 | . . . . . . . . . . . . 13
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} ∈ V | 
| 98 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) | 
| 99 | 97, 98 | dmmpti 6711 | . . . . . . . . . . . 12
⊢ dom
(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) = dom 𝑔 | 
| 100 | 95, 99 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → dom 𝑓 = dom 𝑔) | 
| 101 | 94, 100 | feq12d 6723 | . . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (𝑓:dom 𝑓⟶Top ↔ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top)) | 
| 102 | 100 | ixpeq1d 8950 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ∪ (𝑓‘𝑘)) | 
| 103 |  | fveq1 6904 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (𝑓‘𝑘) = ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘𝑘)) | 
| 104 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑘 → (𝑔‘𝑥) = (𝑔‘𝑘)) | 
| 105 | 104 | unieqd 4919 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑘 → ∪ (𝑔‘𝑥) = ∪ (𝑔‘𝑘)) | 
| 106 | 105 | pweqd 4616 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑘 → 𝒫 ∪ (𝑔‘𝑥) = 𝒫 ∪
(𝑔‘𝑘)) | 
| 107 | 106 | sneqd 4637 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑘 → {𝒫 ∪ (𝑔‘𝑥)} = {𝒫 ∪
(𝑔‘𝑘)}) | 
| 108 | 104, 107 | uneq12d 4168 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 109 | 108 | pweqd 4616 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) = 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 110 | 106 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 ↔ 𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦)) | 
| 111 | 108 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → (𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ↔ 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) | 
| 112 | 110, 111 | imbi12d 344 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → ((𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)})) ↔ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})))) | 
| 113 | 109, 112 | rabeqbidv 3454 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑘 → {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) | 
| 114 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔‘𝑘) ∈ V | 
| 115 |  | snex 5435 | . . . . . . . . . . . . . . . . . . . . 21
⊢
{𝒫 ∪ (𝑔‘𝑘)} ∈ V | 
| 116 | 114, 115 | unex 7765 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V | 
| 117 | 116 | pwex 5379 | . . . . . . . . . . . . . . . . . . 19
⊢ 𝒫
((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V | 
| 118 | 117 | rabex 5338 | . . . . . . . . . . . . . . . . . 18
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ V | 
| 119 | 113, 98, 118 | fvmpt 7015 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ dom 𝑔 → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) | 
| 120 | 103, 119 | sylan9eq 2796 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) | 
| 121 | 120 | unieqd 4919 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ∪ (𝑓‘𝑘) = ∪ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))}) | 
| 122 |  | ssun2 4178 | . . . . . . . . . . . . . . . . . 18
⊢
{𝒫 ∪ (𝑔‘𝑘)} ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) | 
| 123 | 114 | uniex 7762 | . . . . . . . . . . . . . . . . . . . 20
⊢ ∪ (𝑔‘𝑘) ∈ V | 
| 124 | 123 | pwex 5379 | . . . . . . . . . . . . . . . . . . 19
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ V | 
| 125 | 124 | snid 4661 | . . . . . . . . . . . . . . . . . 18
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ {𝒫 ∪ (𝑔‘𝑘)} | 
| 126 | 122, 125 | sselii 3979 | . . . . . . . . . . . . . . . . 17
⊢ 𝒫
∪ (𝑔‘𝑘) ∈ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) | 
| 127 |  | epttop 23017 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∈ V ∧ 𝒫 ∪ (𝑔‘𝑘) ∈ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) → {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ (TopOn‘((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) | 
| 128 | 116, 126,
127 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} ∈ (TopOn‘((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 129 | 128 | toponunii 22923 | . . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) = ∪ {𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))} | 
| 130 | 121, 129 | eqtr4di 2794 | . . . . . . . . . . . . . 14
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ∪ (𝑓‘𝑘) = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 131 | 130 | pweqd 4616 | . . . . . . . . . . . . 13
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → 𝒫 ∪ (𝑓‘𝑘) = 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 132 | 131 | ixpeq2dva 8953 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑔𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 133 | 102, 132 | eqtrd 2776 | . . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 134 |  | 2fveq3 6910 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
(cls‘(∏t‘𝑓)) =
(cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))) | 
| 135 | 100 | ixpeq1d 8950 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓(𝑠‘𝑘) = X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) | 
| 136 | 134, 135 | fveq12d 6912 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) =
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘))) | 
| 137 | 100 | ixpeq1d 8950 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) | 
| 138 | 120 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (cls‘(𝑓‘𝑘)) = (cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})) | 
| 139 | 138 | fveq1d 6907 | . . . . . . . . . . . . . 14
⊢ ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) | 
| 140 | 139 | ixpeq2dva 8953 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑔((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) | 
| 141 | 137, 140 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘))) | 
| 142 | 136, 141 | eqeq12d 2752 | . . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) →
(((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) ↔
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) | 
| 143 | 133, 142 | raleqbidv 3345 | . . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → (∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)) ↔ ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) | 
| 144 | 101, 143 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}) → ((𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ↔ ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘))))) | 
| 145 | 93, 144 | spcv 3604 | . . . . . . . 8
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))}):dom 𝑔⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘)))) | 
| 146 | 80, 92, 145 | sylc 65 | . . . . . . 7
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪
(𝑔‘𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}) ∣ (𝒫 ∪ (𝑔‘𝑘) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑘) ∪ {𝒫 ∪
(𝑔‘𝑘)}))})‘(𝑠‘𝑘))) | 
| 147 |  | simprl 770 | . . . . . . . . 9
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → Fun 𝑔) | 
| 148 | 147 | funfnd 6596 | . . . . . . . 8
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 Fn dom 𝑔) | 
| 149 |  | ssun1 4177 | . . . . . . . . . 10
⊢ (𝑔‘𝑘) ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) | 
| 150 | 114 | elpw 4603 | . . . . . . . . . 10
⊢ ((𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ (𝑔‘𝑘) ⊆ ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 151 | 149, 150 | mpbir 231 | . . . . . . . . 9
⊢ (𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) | 
| 152 | 151 | rgenw 3064 | . . . . . . . 8
⊢
∀𝑘 ∈ dom
𝑔(𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) | 
| 153 | 38 | elixp 8945 | . . . . . . . 8
⊢ (𝑔 ∈ X𝑘 ∈
dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}) ↔ (𝑔 Fn dom 𝑔 ∧ ∀𝑘 ∈ dom 𝑔(𝑔‘𝑘) ∈ 𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)}))) | 
| 154 | 148, 152,
153 | sylanblrc 590 | . . . . . . 7
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 ∈ X𝑘 ∈ dom 𝑔𝒫 ((𝑔‘𝑘) ∪ {𝒫 ∪ (𝑔‘𝑘)})) | 
| 155 | 79, 146, 154 | rspcdva 3622 | . . . . . 6
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) →
((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔‘𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}) ∣ (𝒫 ∪ (𝑔‘𝑥) ∈ 𝑦 → 𝑦 = ((𝑔‘𝑥) ∪ {𝒫 ∪ (𝑔‘𝑥)}))})‘(𝑔‘𝑥))) | 
| 156 | 40, 42, 54, 55, 56, 57, 155 | dfac14lem 23626 | . . . . 5
⊢
((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅) | 
| 157 | 156 | ex 412 | . . . 4
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) | 
| 158 | 157 | alrimiv 1926 | . . 3
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) | 
| 159 |  | dfac9 10178 | . . 3
⊢
(CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔‘𝑥) ≠ ∅)) | 
| 160 | 158, 159 | sylibr 234 | . 2
⊢
(∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘))) →
CHOICE) | 
| 161 | 37, 160 | impbii 209 | 1
⊢
(CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈
dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) |