Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rn1st Structured version   Visualization version   GIF version

Theorem rn1st 45309
Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23365, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypothesis
Ref Expression
rn1st.1 𝑥𝐵
Assertion
Ref Expression
rn1st (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)

Proof of Theorem rn1st
StepHypRef Expression
1 ordom 7806 . . . . . 6 Ord ω
2 reldom 8875 . . . . . . . 8 Rel ≼
32brrelex2i 5673 . . . . . . 7 (𝐵 ≼ ω → ω ∈ V)
4 elong 6314 . . . . . . 7 (ω ∈ V → (ω ∈ On ↔ Ord ω))
53, 4syl 17 . . . . . 6 (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω))
61, 5mpbiri 258 . . . . 5 (𝐵 ≼ ω → ω ∈ On)
7 ondomen 9925 . . . . 5 ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card)
86, 7mpancom 688 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ dom card)
9 rn1st.1 . . . . 5 𝑥𝐵
10 eqid 2731 . . . . 5 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
119, 10dmmptssf 45268 . . . 4 dom (𝑥𝐵𝐶) ⊆ 𝐵
12 ssnum 9927 . . . 4 ((𝐵 ∈ dom card ∧ dom (𝑥𝐵𝐶) ⊆ 𝐵) → dom (𝑥𝐵𝐶) ∈ dom card)
138, 11, 12sylancl 586 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ∈ dom card)
14 funmpt 6519 . . . 4 Fun (𝑥𝐵𝐶)
15 funforn 6742 . . . 4 (Fun (𝑥𝐵𝐶) ↔ (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶))
1614, 15mpbi 230 . . 3 (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶)
17 fodomnum 9945 . . 3 (dom (𝑥𝐵𝐶) ∈ dom card → ((𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶) → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶)))
1813, 16, 17mpisyl 21 . 2 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶))
19 ctex 8886 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
20 ssdomg 8922 . . . 4 (𝐵 ∈ V → (dom (𝑥𝐵𝐶) ⊆ 𝐵 → dom (𝑥𝐵𝐶) ≼ 𝐵))
2119, 11, 20mpisyl 21 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ 𝐵)
22 domtr 8929 . . 3 ((dom (𝑥𝐵𝐶) ≼ 𝐵𝐵 ≼ ω) → dom (𝑥𝐵𝐶) ≼ ω)
2321, 22mpancom 688 . 2 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ ω)
24 domtr 8929 . 2 ((ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶) ∧ dom (𝑥𝐵𝐶) ≼ ω) → ran (𝑥𝐵𝐶) ≼ ω)
2518, 23, 24syl2anc 584 1 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wnfc 2879  Vcvv 3436  wss 3902   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  Ord word 6305  Oncon0 6306  Fun wfun 6475  ontowfo 6479  ωcom 7796  cdom 8867  cardccrd 9825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-card 9829  df-acn 9832
This theorem is referenced by:  saliunclf  46359
  Copyright terms: Public domain W3C validator