Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rn1st Structured version   Visualization version   GIF version

Theorem rn1st 45264
Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23395, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypothesis
Ref Expression
rn1st.1 𝑥𝐵
Assertion
Ref Expression
rn1st (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)

Proof of Theorem rn1st
StepHypRef Expression
1 ordom 7876 . . . . . 6 Ord ω
2 reldom 8970 . . . . . . . 8 Rel ≼
32brrelex2i 5716 . . . . . . 7 (𝐵 ≼ ω → ω ∈ V)
4 elong 6365 . . . . . . 7 (ω ∈ V → (ω ∈ On ↔ Ord ω))
53, 4syl 17 . . . . . 6 (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω))
61, 5mpbiri 258 . . . . 5 (𝐵 ≼ ω → ω ∈ On)
7 ondomen 10056 . . . . 5 ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card)
86, 7mpancom 688 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ dom card)
9 rn1st.1 . . . . 5 𝑥𝐵
10 eqid 2736 . . . . 5 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
119, 10dmmptssf 45223 . . . 4 dom (𝑥𝐵𝐶) ⊆ 𝐵
12 ssnum 10058 . . . 4 ((𝐵 ∈ dom card ∧ dom (𝑥𝐵𝐶) ⊆ 𝐵) → dom (𝑥𝐵𝐶) ∈ dom card)
138, 11, 12sylancl 586 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ∈ dom card)
14 funmpt 6579 . . . 4 Fun (𝑥𝐵𝐶)
15 funforn 6802 . . . 4 (Fun (𝑥𝐵𝐶) ↔ (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶))
1614, 15mpbi 230 . . 3 (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶)
17 fodomnum 10076 . . 3 (dom (𝑥𝐵𝐶) ∈ dom card → ((𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶) → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶)))
1813, 16, 17mpisyl 21 . 2 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶))
19 ctex 8983 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
20 ssdomg 9019 . . . 4 (𝐵 ∈ V → (dom (𝑥𝐵𝐶) ⊆ 𝐵 → dom (𝑥𝐵𝐶) ≼ 𝐵))
2119, 11, 20mpisyl 21 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ 𝐵)
22 domtr 9026 . . 3 ((dom (𝑥𝐵𝐶) ≼ 𝐵𝐵 ≼ ω) → dom (𝑥𝐵𝐶) ≼ ω)
2321, 22mpancom 688 . 2 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ ω)
24 domtr 9026 . 2 ((ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶) ∧ dom (𝑥𝐵𝐶) ≼ ω) → ran (𝑥𝐵𝐶) ≼ ω)
2518, 23, 24syl2anc 584 1 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wnfc 2884  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  Ord word 6356  Oncon0 6357  Fun wfun 6530  ontowfo 6534  ωcom 7866  cdom 8962  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-card 9958  df-acn 9961
This theorem is referenced by:  saliunclf  46318
  Copyright terms: Public domain W3C validator