Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rn1st Structured version   Visualization version   GIF version

Theorem rn1st 45274
Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23346, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypothesis
Ref Expression
rn1st.1 𝑥𝐵
Assertion
Ref Expression
rn1st (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)

Proof of Theorem rn1st
StepHypRef Expression
1 ordom 7855 . . . . . 6 Ord ω
2 reldom 8927 . . . . . . . 8 Rel ≼
32brrelex2i 5698 . . . . . . 7 (𝐵 ≼ ω → ω ∈ V)
4 elong 6343 . . . . . . 7 (ω ∈ V → (ω ∈ On ↔ Ord ω))
53, 4syl 17 . . . . . 6 (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω))
61, 5mpbiri 258 . . . . 5 (𝐵 ≼ ω → ω ∈ On)
7 ondomen 9997 . . . . 5 ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card)
86, 7mpancom 688 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ dom card)
9 rn1st.1 . . . . 5 𝑥𝐵
10 eqid 2730 . . . . 5 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
119, 10dmmptssf 45233 . . . 4 dom (𝑥𝐵𝐶) ⊆ 𝐵
12 ssnum 9999 . . . 4 ((𝐵 ∈ dom card ∧ dom (𝑥𝐵𝐶) ⊆ 𝐵) → dom (𝑥𝐵𝐶) ∈ dom card)
138, 11, 12sylancl 586 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ∈ dom card)
14 funmpt 6557 . . . 4 Fun (𝑥𝐵𝐶)
15 funforn 6782 . . . 4 (Fun (𝑥𝐵𝐶) ↔ (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶))
1614, 15mpbi 230 . . 3 (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶)
17 fodomnum 10017 . . 3 (dom (𝑥𝐵𝐶) ∈ dom card → ((𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶) → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶)))
1813, 16, 17mpisyl 21 . 2 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶))
19 ctex 8938 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
20 ssdomg 8974 . . . 4 (𝐵 ∈ V → (dom (𝑥𝐵𝐶) ⊆ 𝐵 → dom (𝑥𝐵𝐶) ≼ 𝐵))
2119, 11, 20mpisyl 21 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ 𝐵)
22 domtr 8981 . . 3 ((dom (𝑥𝐵𝐶) ≼ 𝐵𝐵 ≼ ω) → dom (𝑥𝐵𝐶) ≼ ω)
2321, 22mpancom 688 . 2 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ ω)
24 domtr 8981 . 2 ((ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶) ∧ dom (𝑥𝐵𝐶) ≼ ω) → ran (𝑥𝐵𝐶) ≼ ω)
2518, 23, 24syl2anc 584 1 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wnfc 2877  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  Ord word 6334  Oncon0 6335  Fun wfun 6508  ontowfo 6512  ωcom 7845  cdom 8919  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-card 9899  df-acn 9902
This theorem is referenced by:  saliunclf  46327
  Copyright terms: Public domain W3C validator