| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rn1st | Structured version Visualization version GIF version | ||
| Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23395, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| rn1st.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| rn1st | ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7876 | . . . . . 6 ⊢ Ord ω | |
| 2 | reldom 8970 | . . . . . . . 8 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5716 | . . . . . . 7 ⊢ (𝐵 ≼ ω → ω ∈ V) |
| 4 | elong 6365 | . . . . . . 7 ⊢ (ω ∈ V → (ω ∈ On ↔ Ord ω)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω)) |
| 6 | 1, 5 | mpbiri 258 | . . . . 5 ⊢ (𝐵 ≼ ω → ω ∈ On) |
| 7 | ondomen 10056 | . . . . 5 ⊢ ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card) | |
| 8 | 6, 7 | mpancom 688 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ dom card) |
| 9 | rn1st.1 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 10 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 11 | 9, 10 | dmmptssf 45223 | . . . 4 ⊢ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 |
| 12 | ssnum 10058 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) | |
| 13 | 8, 11, 12 | sylancl 586 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) |
| 14 | funmpt 6579 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 15 | funforn 6802 | . . . 4 ⊢ (Fun (𝑥 ∈ 𝐵 ↦ 𝐶) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 16 | 14, 15 | mpbi 230 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) |
| 17 | fodomnum 10076 | . . 3 ⊢ (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card → ((𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶))) | |
| 18 | 13, 16, 17 | mpisyl 21 | . 2 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 19 | ctex 8983 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
| 20 | ssdomg 9019 | . . . 4 ⊢ (𝐵 ∈ V → (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵)) | |
| 21 | 19, 11, 20 | mpisyl 21 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵) |
| 22 | domtr 9026 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵 ∧ 𝐵 ≼ ω) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
| 23 | 21, 22 | mpancom 688 | . 2 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
| 24 | domtr 9026 | . 2 ⊢ ((ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
| 25 | 18, 23, 24 | syl2anc 584 | 1 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Ⅎwnfc 2884 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 dom cdm 5659 ran crn 5660 Ord word 6356 Oncon0 6357 Fun wfun 6530 –onto→wfo 6534 ωcom 7866 ≼ cdom 8962 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-card 9958 df-acn 9961 |
| This theorem is referenced by: saliunclf 46318 |
| Copyright terms: Public domain | W3C validator |