| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rn1st | Structured version Visualization version GIF version | ||
| Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23346, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| rn1st.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| rn1st | ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7855 | . . . . . 6 ⊢ Ord ω | |
| 2 | reldom 8927 | . . . . . . . 8 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5698 | . . . . . . 7 ⊢ (𝐵 ≼ ω → ω ∈ V) |
| 4 | elong 6343 | . . . . . . 7 ⊢ (ω ∈ V → (ω ∈ On ↔ Ord ω)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω)) |
| 6 | 1, 5 | mpbiri 258 | . . . . 5 ⊢ (𝐵 ≼ ω → ω ∈ On) |
| 7 | ondomen 9997 | . . . . 5 ⊢ ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card) | |
| 8 | 6, 7 | mpancom 688 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ dom card) |
| 9 | rn1st.1 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 10 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 11 | 9, 10 | dmmptssf 45233 | . . . 4 ⊢ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 |
| 12 | ssnum 9999 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) | |
| 13 | 8, 11, 12 | sylancl 586 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) |
| 14 | funmpt 6557 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 15 | funforn 6782 | . . . 4 ⊢ (Fun (𝑥 ∈ 𝐵 ↦ 𝐶) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 16 | 14, 15 | mpbi 230 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) |
| 17 | fodomnum 10017 | . . 3 ⊢ (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card → ((𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶))) | |
| 18 | 13, 16, 17 | mpisyl 21 | . 2 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 19 | ctex 8938 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
| 20 | ssdomg 8974 | . . . 4 ⊢ (𝐵 ∈ V → (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵)) | |
| 21 | 19, 11, 20 | mpisyl 21 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵) |
| 22 | domtr 8981 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵 ∧ 𝐵 ≼ ω) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
| 23 | 21, 22 | mpancom 688 | . 2 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
| 24 | domtr 8981 | . 2 ⊢ ((ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
| 25 | 18, 23, 24 | syl2anc 584 | 1 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Ⅎwnfc 2877 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 Ord word 6334 Oncon0 6335 Fun wfun 6508 –onto→wfo 6512 ωcom 7845 ≼ cdom 8919 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-card 9899 df-acn 9902 |
| This theorem is referenced by: saliunclf 46327 |
| Copyright terms: Public domain | W3C validator |