Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rn1st Structured version   Visualization version   GIF version

Theorem rn1st 44793
Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23417, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypothesis
Ref Expression
rn1st.1 𝑥𝐵
Assertion
Ref Expression
rn1st (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)

Proof of Theorem rn1st
StepHypRef Expression
1 ordom 7881 . . . . . 6 Ord ω
2 reldom 8970 . . . . . . . 8 Rel ≼
32brrelex2i 5735 . . . . . . 7 (𝐵 ≼ ω → ω ∈ V)
4 elong 6379 . . . . . . 7 (ω ∈ V → (ω ∈ On ↔ Ord ω))
53, 4syl 17 . . . . . 6 (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω))
61, 5mpbiri 257 . . . . 5 (𝐵 ≼ ω → ω ∈ On)
7 ondomen 10067 . . . . 5 ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card)
86, 7mpancom 686 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ dom card)
9 rn1st.1 . . . . 5 𝑥𝐵
10 eqid 2725 . . . . 5 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
119, 10dmmptssf 44749 . . . 4 dom (𝑥𝐵𝐶) ⊆ 𝐵
12 ssnum 10069 . . . 4 ((𝐵 ∈ dom card ∧ dom (𝑥𝐵𝐶) ⊆ 𝐵) → dom (𝑥𝐵𝐶) ∈ dom card)
138, 11, 12sylancl 584 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ∈ dom card)
14 funmpt 6592 . . . 4 Fun (𝑥𝐵𝐶)
15 funforn 6817 . . . 4 (Fun (𝑥𝐵𝐶) ↔ (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶))
1614, 15mpbi 229 . . 3 (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶)
17 fodomnum 10087 . . 3 (dom (𝑥𝐵𝐶) ∈ dom card → ((𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶) → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶)))
1813, 16, 17mpisyl 21 . 2 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶))
19 ctex 8984 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
20 ssdomg 9021 . . . 4 (𝐵 ∈ V → (dom (𝑥𝐵𝐶) ⊆ 𝐵 → dom (𝑥𝐵𝐶) ≼ 𝐵))
2119, 11, 20mpisyl 21 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ 𝐵)
22 domtr 9028 . . 3 ((dom (𝑥𝐵𝐶) ≼ 𝐵𝐵 ≼ ω) → dom (𝑥𝐵𝐶) ≼ ω)
2321, 22mpancom 686 . 2 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ ω)
24 domtr 9028 . 2 ((ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶) ∧ dom (𝑥𝐵𝐶) ≼ ω) → ran (𝑥𝐵𝐶) ≼ ω)
2518, 23, 24syl2anc 582 1 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  wnfc 2875  Vcvv 3461  wss 3944   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  Ord word 6370  Oncon0 6371  Fun wfun 6543  ontowfo 6547  ωcom 7871  cdom 8962  cardccrd 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-card 9969  df-acn 9972
This theorem is referenced by:  saliunclf  45853
  Copyright terms: Public domain W3C validator