Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rn1st Structured version   Visualization version   GIF version

Theorem rn1st 45251
Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem 23355, with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypothesis
Ref Expression
rn1st.1 𝑥𝐵
Assertion
Ref Expression
rn1st (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)

Proof of Theorem rn1st
StepHypRef Expression
1 ordom 7816 . . . . . 6 Ord ω
2 reldom 8885 . . . . . . . 8 Rel ≼
32brrelex2i 5680 . . . . . . 7 (𝐵 ≼ ω → ω ∈ V)
4 elong 6319 . . . . . . 7 (ω ∈ V → (ω ∈ On ↔ Ord ω))
53, 4syl 17 . . . . . 6 (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω))
61, 5mpbiri 258 . . . . 5 (𝐵 ≼ ω → ω ∈ On)
7 ondomen 9950 . . . . 5 ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card)
86, 7mpancom 688 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ dom card)
9 rn1st.1 . . . . 5 𝑥𝐵
10 eqid 2729 . . . . 5 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
119, 10dmmptssf 45210 . . . 4 dom (𝑥𝐵𝐶) ⊆ 𝐵
12 ssnum 9952 . . . 4 ((𝐵 ∈ dom card ∧ dom (𝑥𝐵𝐶) ⊆ 𝐵) → dom (𝑥𝐵𝐶) ∈ dom card)
138, 11, 12sylancl 586 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ∈ dom card)
14 funmpt 6524 . . . 4 Fun (𝑥𝐵𝐶)
15 funforn 6747 . . . 4 (Fun (𝑥𝐵𝐶) ↔ (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶))
1614, 15mpbi 230 . . 3 (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶)
17 fodomnum 9970 . . 3 (dom (𝑥𝐵𝐶) ∈ dom card → ((𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶) → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶)))
1813, 16, 17mpisyl 21 . 2 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶))
19 ctex 8896 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
20 ssdomg 8932 . . . 4 (𝐵 ∈ V → (dom (𝑥𝐵𝐶) ⊆ 𝐵 → dom (𝑥𝐵𝐶) ≼ 𝐵))
2119, 11, 20mpisyl 21 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ 𝐵)
22 domtr 8939 . . 3 ((dom (𝑥𝐵𝐶) ≼ 𝐵𝐵 ≼ ω) → dom (𝑥𝐵𝐶) ≼ ω)
2321, 22mpancom 688 . 2 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ ω)
24 domtr 8939 . 2 ((ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶) ∧ dom (𝑥𝐵𝐶) ≼ ω) → ran (𝑥𝐵𝐶) ≼ ω)
2518, 23, 24syl2anc 584 1 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wnfc 2876  Vcvv 3438  wss 3905   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  Ord word 6310  Oncon0 6311  Fun wfun 6480  ontowfo 6484  ωcom 7806  cdom 8877  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-card 9854  df-acn 9857
This theorem is referenced by:  saliunclf  46304
  Copyright terms: Public domain W3C validator