MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcrestlem Structured version   Visualization version   GIF version

Theorem 1stcrestlem 22511
Description: Lemma for 1stcrest 22512. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
1stcrestlem (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem 1stcrestlem
StepHypRef Expression
1 ordom 7697 . . . . . 6 Ord ω
2 reldom 8697 . . . . . . . 8 Rel ≼
32brrelex2i 5635 . . . . . . 7 (𝐵 ≼ ω → ω ∈ V)
4 elong 6259 . . . . . . 7 (ω ∈ V → (ω ∈ On ↔ Ord ω))
53, 4syl 17 . . . . . 6 (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω))
61, 5mpbiri 257 . . . . 5 (𝐵 ≼ ω → ω ∈ On)
7 ondomen 9724 . . . . 5 ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card)
86, 7mpancom 684 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ dom card)
9 eqid 2738 . . . . 5 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
109dmmptss 6133 . . . 4 dom (𝑥𝐵𝐶) ⊆ 𝐵
11 ssnum 9726 . . . 4 ((𝐵 ∈ dom card ∧ dom (𝑥𝐵𝐶) ⊆ 𝐵) → dom (𝑥𝐵𝐶) ∈ dom card)
128, 10, 11sylancl 585 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ∈ dom card)
13 funmpt 6456 . . . 4 Fun (𝑥𝐵𝐶)
14 funforn 6679 . . . 4 (Fun (𝑥𝐵𝐶) ↔ (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶))
1513, 14mpbi 229 . . 3 (𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶)
16 fodomnum 9744 . . 3 (dom (𝑥𝐵𝐶) ∈ dom card → ((𝑥𝐵𝐶):dom (𝑥𝐵𝐶)–onto→ran (𝑥𝐵𝐶) → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶)))
1712, 15, 16mpisyl 21 . 2 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶))
18 ctex 8708 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
19 ssdomg 8741 . . . 4 (𝐵 ∈ V → (dom (𝑥𝐵𝐶) ⊆ 𝐵 → dom (𝑥𝐵𝐶) ≼ 𝐵))
2018, 10, 19mpisyl 21 . . 3 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ 𝐵)
21 domtr 8748 . . 3 ((dom (𝑥𝐵𝐶) ≼ 𝐵𝐵 ≼ ω) → dom (𝑥𝐵𝐶) ≼ ω)
2220, 21mpancom 684 . 2 (𝐵 ≼ ω → dom (𝑥𝐵𝐶) ≼ ω)
23 domtr 8748 . 2 ((ran (𝑥𝐵𝐶) ≼ dom (𝑥𝐵𝐶) ∧ dom (𝑥𝐵𝐶) ≼ ω) → ran (𝑥𝐵𝐶) ≼ ω)
2417, 22, 23syl2anc 583 1 (𝐵 ≼ ω → ran (𝑥𝐵𝐶) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  Ord word 6250  Oncon0 6251  Fun wfun 6412  ontowfo 6416  ωcom 7687  cdom 8689  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-card 9628  df-acn 9631
This theorem is referenced by:  1stcrest  22512  2ndcrest  22513  lly1stc  22555  abrexct  30953  ldgenpisyslem1  32031  saliuncl  43753  meadjiun  43894
  Copyright terms: Public domain W3C validator