![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stcrestlem | Structured version Visualization version GIF version |
Description: Lemma for 1stcrest 23279. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
1stcrestlem | ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7858 | . . . . . 6 ⊢ Ord ω | |
2 | reldom 8941 | . . . . . . . 8 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5723 | . . . . . . 7 ⊢ (𝐵 ≼ ω → ω ∈ V) |
4 | elong 6362 | . . . . . . 7 ⊢ (ω ∈ V → (ω ∈ On ↔ Ord ω)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω)) |
6 | 1, 5 | mpbiri 258 | . . . . 5 ⊢ (𝐵 ≼ ω → ω ∈ On) |
7 | ondomen 10028 | . . . . 5 ⊢ ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card) | |
8 | 6, 7 | mpancom 685 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ dom card) |
9 | eqid 2724 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
10 | 9 | dmmptss 6230 | . . . 4 ⊢ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 |
11 | ssnum 10030 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) | |
12 | 8, 10, 11 | sylancl 585 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) |
13 | funmpt 6576 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐵 ↦ 𝐶) | |
14 | funforn 6802 | . . . 4 ⊢ (Fun (𝑥 ∈ 𝐵 ↦ 𝐶) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
15 | 13, 14 | mpbi 229 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) |
16 | fodomnum 10048 | . . 3 ⊢ (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card → ((𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶))) | |
17 | 12, 15, 16 | mpisyl 21 | . 2 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶)) |
18 | ctex 8955 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
19 | ssdomg 8992 | . . . 4 ⊢ (𝐵 ∈ V → (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵)) | |
20 | 18, 10, 19 | mpisyl 21 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵) |
21 | domtr 8999 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵 ∧ 𝐵 ≼ ω) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
22 | 20, 21 | mpancom 685 | . 2 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
23 | domtr 8999 | . 2 ⊢ ((ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
24 | 17, 22, 23 | syl2anc 583 | 1 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 class class class wbr 5138 ↦ cmpt 5221 dom cdm 5666 ran crn 5667 Ord word 6353 Oncon0 6354 Fun wfun 6527 –onto→wfo 6531 ωcom 7848 ≼ cdom 8933 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-card 9930 df-acn 9933 |
This theorem is referenced by: 1stcrest 23279 2ndcrest 23280 lly1stc 23322 abrexct 32410 ldgenpisyslem1 33650 meadjiun 45667 |
Copyright terms: Public domain | W3C validator |