Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1stcrestlem | Structured version Visualization version GIF version |
Description: Lemma for 1stcrest 22604. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
1stcrestlem | ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7722 | . . . . . 6 ⊢ Ord ω | |
2 | reldom 8739 | . . . . . . . 8 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5644 | . . . . . . 7 ⊢ (𝐵 ≼ ω → ω ∈ V) |
4 | elong 6274 | . . . . . . 7 ⊢ (ω ∈ V → (ω ∈ On ↔ Ord ω)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝐵 ≼ ω → (ω ∈ On ↔ Ord ω)) |
6 | 1, 5 | mpbiri 257 | . . . . 5 ⊢ (𝐵 ≼ ω → ω ∈ On) |
7 | ondomen 9793 | . . . . 5 ⊢ ((ω ∈ On ∧ 𝐵 ≼ ω) → 𝐵 ∈ dom card) | |
8 | 6, 7 | mpancom 685 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ dom card) |
9 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
10 | 9 | dmmptss 6144 | . . . 4 ⊢ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 |
11 | ssnum 9795 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) | |
12 | 8, 10, 11 | sylancl 586 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card) |
13 | funmpt 6472 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐵 ↦ 𝐶) | |
14 | funforn 6695 | . . . 4 ⊢ (Fun (𝑥 ∈ 𝐵 ↦ 𝐶) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
15 | 13, 14 | mpbi 229 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) |
16 | fodomnum 9813 | . . 3 ⊢ (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ dom card → ((𝑥 ∈ 𝐵 ↦ 𝐶):dom (𝑥 ∈ 𝐵 ↦ 𝐶)–onto→ran (𝑥 ∈ 𝐵 ↦ 𝐶) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶))) | |
17 | 12, 15, 16 | mpisyl 21 | . 2 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶)) |
18 | ctex 8753 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
19 | ssdomg 8786 | . . . 4 ⊢ (𝐵 ∈ V → (dom (𝑥 ∈ 𝐵 ↦ 𝐶) ⊆ 𝐵 → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵)) | |
20 | 18, 10, 19 | mpisyl 21 | . . 3 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵) |
21 | domtr 8793 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ 𝐵 ∧ 𝐵 ≼ ω) → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
22 | 20, 21 | mpancom 685 | . 2 ⊢ (𝐵 ≼ ω → dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
23 | domtr 8793 | . 2 ⊢ ((ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ∧ dom (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | |
24 | 17, 22, 23 | syl2anc 584 | 1 ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 Ord word 6265 Oncon0 6266 Fun wfun 6427 –onto→wfo 6431 ωcom 7712 ≼ cdom 8731 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-card 9697 df-acn 9700 |
This theorem is referenced by: 1stcrest 22604 2ndcrest 22605 lly1stc 22647 abrexct 31051 ldgenpisyslem1 32131 saliuncl 43863 meadjiun 44004 |
Copyright terms: Public domain | W3C validator |