MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem8 Structured version   Visualization version   GIF version

Theorem ordtypelem8 9214
Description: Lemma for ordtype 9221. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem8 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem8
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . 6 𝐹 = recs(𝐺)
2 ordtypelem.2 . . . . . 6 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . . . . 6 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . . . . 6 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . . . . 6 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . . . . 6 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . . . . 6 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem4 9210 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
98fdmd 6595 . . . 4 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
10 inss1 4159 . . . . 5 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
111, 2, 3, 4, 5, 6, 7ordtypelem2 9208 . . . . . 6 (𝜑 → Ord 𝑇)
12 ordsson 7610 . . . . . 6 (Ord 𝑇𝑇 ⊆ On)
1311, 12syl 17 . . . . 5 (𝜑𝑇 ⊆ On)
1410, 13sstrid 3928 . . . 4 (𝜑 → (𝑇 ∩ dom 𝐹) ⊆ On)
159, 14eqsstrd 3955 . . 3 (𝜑 → dom 𝑂 ⊆ On)
16 epweon 7603 . . . 4 E We On
17 weso 5571 . . . 4 ( E We On → E Or On)
1816, 17ax-mp 5 . . 3 E Or On
19 soss 5514 . . 3 (dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂))
2015, 18, 19mpisyl 21 . 2 (𝜑 → E Or dom 𝑂)
218frnd 6592 . . . 4 (𝜑 → ran 𝑂𝐴)
22 wess 5567 . . . 4 (ran 𝑂𝐴 → (𝑅 We 𝐴𝑅 We ran 𝑂))
2321, 6, 22sylc 65 . . 3 (𝜑𝑅 We ran 𝑂)
24 weso 5571 . . 3 (𝑅 We ran 𝑂𝑅 Or ran 𝑂)
25 sopo 5513 . . 3 (𝑅 Or ran 𝑂𝑅 Po ran 𝑂)
2623, 24, 253syl 18 . 2 (𝜑𝑅 Po ran 𝑂)
278ffund 6588 . . 3 (𝜑 → Fun 𝑂)
28 funforn 6679 . . 3 (Fun 𝑂𝑂:dom 𝑂onto→ran 𝑂)
2927, 28sylib 217 . 2 (𝜑𝑂:dom 𝑂onto→ran 𝑂)
30 epel 5489 . . . . 5 (𝑎 E 𝑏𝑎𝑏)
311, 2, 3, 4, 5, 6, 7ordtypelem6 9212 . . . . 5 ((𝜑𝑏 ∈ dom 𝑂) → (𝑎𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3230, 31syl5bi 241 . . . 4 ((𝜑𝑏 ∈ dom 𝑂) → (𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3332ralrimiva 3107 . . 3 (𝜑 → ∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3433ralrimivw 3108 . 2 (𝜑 → ∀𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
35 soisoi 7179 . 2 ((( E Or dom 𝑂𝑅 Po ran 𝑂) ∧ (𝑂:dom 𝑂onto→ran 𝑂 ∧ ∀𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
3620, 26, 29, 34, 35syl22anc 835 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070  cmpt 5153   E cep 5485   Po wpo 5492   Or wor 5493   Se wse 5533   We wwe 5534  dom cdm 5580  ran crn 5581  cima 5583  Ord word 6250  Oncon0 6251  Fun wfun 6412  ontowfo 6416  cfv 6418   Isom wiso 6419  crio 7211  recscrecs 8172  OrdIsocoi 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-oi 9199
This theorem is referenced by:  ordtypelem9  9215  ordtypelem10  9216  oiiso2  9220
  Copyright terms: Public domain W3C validator