| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ordtype 9546. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
| ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| Ref | Expression |
|---|---|
| ordtypelem8 | ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
| 2 | ordtypelem.2 | . . . . . 6 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 3 | ordtypelem.3 | . . . . . 6 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
| 4 | ordtypelem.5 | . . . . . 6 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
| 5 | ordtypelem.6 | . . . . . 6 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
| 6 | ordtypelem.7 | . . . . . 6 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 7 | ordtypelem.8 | . . . . . 6 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9535 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| 9 | 8 | fdmd 6716 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 10 | inss1 4212 | . . . . 5 ⊢ (𝑇 ∩ dom 𝐹) ⊆ 𝑇 | |
| 11 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9533 | . . . . . 6 ⊢ (𝜑 → Ord 𝑇) |
| 12 | ordsson 7777 | . . . . . 6 ⊢ (Ord 𝑇 → 𝑇 ⊆ On) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ On) |
| 14 | 10, 13 | sstrid 3970 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ dom 𝐹) ⊆ On) |
| 15 | 9, 14 | eqsstrd 3993 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ On) |
| 16 | epweon 7769 | . . . 4 ⊢ E We On | |
| 17 | weso 5645 | . . . 4 ⊢ ( E We On → E Or On) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ E Or On |
| 19 | soss 5581 | . . 3 ⊢ (dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂)) | |
| 20 | 15, 18, 19 | mpisyl 21 | . 2 ⊢ (𝜑 → E Or dom 𝑂) |
| 21 | 8 | frnd 6714 | . . . 4 ⊢ (𝜑 → ran 𝑂 ⊆ 𝐴) |
| 22 | wess 5640 | . . . 4 ⊢ (ran 𝑂 ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We ran 𝑂)) | |
| 23 | 21, 6, 22 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑅 We ran 𝑂) |
| 24 | weso 5645 | . . 3 ⊢ (𝑅 We ran 𝑂 → 𝑅 Or ran 𝑂) | |
| 25 | sopo 5580 | . . 3 ⊢ (𝑅 Or ran 𝑂 → 𝑅 Po ran 𝑂) | |
| 26 | 23, 24, 25 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑅 Po ran 𝑂) |
| 27 | 8 | ffund 6710 | . . 3 ⊢ (𝜑 → Fun 𝑂) |
| 28 | funforn 6797 | . . 3 ⊢ (Fun 𝑂 ↔ 𝑂:dom 𝑂–onto→ran 𝑂) | |
| 29 | 27, 28 | sylib 218 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂–onto→ran 𝑂) |
| 30 | epel 5556 | . . . . 5 ⊢ (𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏) | |
| 31 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem6 9537 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 ∈ 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 32 | 30, 31 | biimtrid 242 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 33 | 32 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 34 | 33 | ralrimivw 3136 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 35 | soisoi 7321 | . 2 ⊢ ((( E Or dom 𝑂 ∧ 𝑅 Po ran 𝑂) ∧ (𝑂:dom 𝑂–onto→ran 𝑂 ∧ ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏)))) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | |
| 36 | 20, 26, 29, 34, 35 | syl22anc 838 | 1 ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 E cep 5552 Po wpo 5559 Or wor 5560 Se wse 5604 We wwe 5605 dom cdm 5654 ran crn 5655 “ cima 5657 Ord word 6351 Oncon0 6352 Fun wfun 6525 –onto→wfo 6529 ‘cfv 6531 Isom wiso 6532 ℩crio 7361 recscrecs 8384 OrdIsocoi 9523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-oi 9524 |
| This theorem is referenced by: ordtypelem9 9540 ordtypelem10 9541 oiiso2 9545 |
| Copyright terms: Public domain | W3C validator |