Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtypelem8 | Structured version Visualization version GIF version |
Description: Lemma for ordtype 9221. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
Ref | Expression |
---|---|
ordtypelem8 | ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
2 | ordtypelem.2 | . . . . . 6 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
3 | ordtypelem.3 | . . . . . 6 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
4 | ordtypelem.5 | . . . . . 6 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
5 | ordtypelem.6 | . . . . . 6 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
6 | ordtypelem.7 | . . . . . 6 ⊢ (𝜑 → 𝑅 We 𝐴) | |
7 | ordtypelem.8 | . . . . . 6 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9210 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
9 | 8 | fdmd 6595 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
10 | inss1 4159 | . . . . 5 ⊢ (𝑇 ∩ dom 𝐹) ⊆ 𝑇 | |
11 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9208 | . . . . . 6 ⊢ (𝜑 → Ord 𝑇) |
12 | ordsson 7610 | . . . . . 6 ⊢ (Ord 𝑇 → 𝑇 ⊆ On) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ On) |
14 | 10, 13 | sstrid 3928 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ dom 𝐹) ⊆ On) |
15 | 9, 14 | eqsstrd 3955 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ On) |
16 | epweon 7603 | . . . 4 ⊢ E We On | |
17 | weso 5571 | . . . 4 ⊢ ( E We On → E Or On) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ E Or On |
19 | soss 5514 | . . 3 ⊢ (dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂)) | |
20 | 15, 18, 19 | mpisyl 21 | . 2 ⊢ (𝜑 → E Or dom 𝑂) |
21 | 8 | frnd 6592 | . . . 4 ⊢ (𝜑 → ran 𝑂 ⊆ 𝐴) |
22 | wess 5567 | . . . 4 ⊢ (ran 𝑂 ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We ran 𝑂)) | |
23 | 21, 6, 22 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑅 We ran 𝑂) |
24 | weso 5571 | . . 3 ⊢ (𝑅 We ran 𝑂 → 𝑅 Or ran 𝑂) | |
25 | sopo 5513 | . . 3 ⊢ (𝑅 Or ran 𝑂 → 𝑅 Po ran 𝑂) | |
26 | 23, 24, 25 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑅 Po ran 𝑂) |
27 | 8 | ffund 6588 | . . 3 ⊢ (𝜑 → Fun 𝑂) |
28 | funforn 6679 | . . 3 ⊢ (Fun 𝑂 ↔ 𝑂:dom 𝑂–onto→ran 𝑂) | |
29 | 27, 28 | sylib 217 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂–onto→ran 𝑂) |
30 | epel 5489 | . . . . 5 ⊢ (𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏) | |
31 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem6 9212 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 ∈ 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
32 | 30, 31 | syl5bi 241 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
33 | 32 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
34 | 33 | ralrimivw 3108 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
35 | soisoi 7179 | . 2 ⊢ ((( E Or dom 𝑂 ∧ 𝑅 Po ran 𝑂) ∧ (𝑂:dom 𝑂–onto→ran 𝑂 ∧ ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏)))) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | |
36 | 20, 26, 29, 34, 35 | syl22anc 835 | 1 ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 E cep 5485 Po wpo 5492 Or wor 5493 Se wse 5533 We wwe 5534 dom cdm 5580 ran crn 5581 “ cima 5583 Ord word 6250 Oncon0 6251 Fun wfun 6412 –onto→wfo 6416 ‘cfv 6418 Isom wiso 6419 ℩crio 7211 recscrecs 8172 OrdIsocoi 9198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-oi 9199 |
This theorem is referenced by: ordtypelem9 9215 ordtypelem10 9216 oiiso2 9220 |
Copyright terms: Public domain | W3C validator |