| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for ordtype 9413. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
| ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| Ref | Expression |
|---|---|
| ordtypelem8 | ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
| 2 | ordtypelem.2 | . . . . . 6 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 3 | ordtypelem.3 | . . . . . 6 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
| 4 | ordtypelem.5 | . . . . . 6 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
| 5 | ordtypelem.6 | . . . . . 6 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
| 6 | ordtypelem.7 | . . . . . 6 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 7 | ordtypelem.8 | . . . . . 6 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9402 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| 9 | 8 | fdmd 6656 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 10 | inss1 4182 | . . . . 5 ⊢ (𝑇 ∩ dom 𝐹) ⊆ 𝑇 | |
| 11 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9400 | . . . . . 6 ⊢ (𝜑 → Ord 𝑇) |
| 12 | ordsson 7711 | . . . . . 6 ⊢ (Ord 𝑇 → 𝑇 ⊆ On) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ On) |
| 14 | 10, 13 | sstrid 3941 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ dom 𝐹) ⊆ On) |
| 15 | 9, 14 | eqsstrd 3964 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ On) |
| 16 | epweon 7703 | . . . 4 ⊢ E We On | |
| 17 | weso 5602 | . . . 4 ⊢ ( E We On → E Or On) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ E Or On |
| 19 | soss 5539 | . . 3 ⊢ (dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂)) | |
| 20 | 15, 18, 19 | mpisyl 21 | . 2 ⊢ (𝜑 → E Or dom 𝑂) |
| 21 | 8 | frnd 6654 | . . . 4 ⊢ (𝜑 → ran 𝑂 ⊆ 𝐴) |
| 22 | wess 5597 | . . . 4 ⊢ (ran 𝑂 ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We ran 𝑂)) | |
| 23 | 21, 6, 22 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑅 We ran 𝑂) |
| 24 | weso 5602 | . . 3 ⊢ (𝑅 We ran 𝑂 → 𝑅 Or ran 𝑂) | |
| 25 | sopo 5538 | . . 3 ⊢ (𝑅 Or ran 𝑂 → 𝑅 Po ran 𝑂) | |
| 26 | 23, 24, 25 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑅 Po ran 𝑂) |
| 27 | 8 | ffund 6650 | . . 3 ⊢ (𝜑 → Fun 𝑂) |
| 28 | funforn 6737 | . . 3 ⊢ (Fun 𝑂 ↔ 𝑂:dom 𝑂–onto→ran 𝑂) | |
| 29 | 27, 28 | sylib 218 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂–onto→ran 𝑂) |
| 30 | epel 5514 | . . . . 5 ⊢ (𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏) | |
| 31 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem6 9404 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 ∈ 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 32 | 30, 31 | biimtrid 242 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 33 | 32 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 34 | 33 | ralrimivw 3128 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
| 35 | soisoi 7257 | . 2 ⊢ ((( E Or dom 𝑂 ∧ 𝑅 Po ran 𝑂) ∧ (𝑂:dom 𝑂–onto→ran 𝑂 ∧ ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏)))) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | |
| 36 | 20, 26, 29, 34, 35 | syl22anc 838 | 1 ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 E cep 5510 Po wpo 5517 Or wor 5518 Se wse 5562 We wwe 5563 dom cdm 5611 ran crn 5612 “ cima 5614 Ord word 6300 Oncon0 6301 Fun wfun 6470 –onto→wfo 6474 ‘cfv 6476 Isom wiso 6477 ℩crio 7297 recscrecs 8285 OrdIsocoi 9390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-oi 9391 |
| This theorem is referenced by: ordtypelem9 9407 ordtypelem10 9408 oiiso2 9412 |
| Copyright terms: Public domain | W3C validator |