MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem8 Structured version   Visualization version   GIF version

Theorem ordtypelem8 9422
Description: Lemma for ordtype 9429. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem8 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem8
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . 6 𝐹 = recs(𝐺)
2 ordtypelem.2 . . . . . 6 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . . . . 6 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . . . . 6 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . . . . 6 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . . . . 6 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . . . . 6 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem4 9418 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
98fdmd 6669 . . . 4 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
10 inss1 4186 . . . . 5 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
111, 2, 3, 4, 5, 6, 7ordtypelem2 9416 . . . . . 6 (𝜑 → Ord 𝑇)
12 ordsson 7725 . . . . . 6 (Ord 𝑇𝑇 ⊆ On)
1311, 12syl 17 . . . . 5 (𝜑𝑇 ⊆ On)
1410, 13sstrid 3942 . . . 4 (𝜑 → (𝑇 ∩ dom 𝐹) ⊆ On)
159, 14eqsstrd 3965 . . 3 (𝜑 → dom 𝑂 ⊆ On)
16 epweon 7717 . . . 4 E We On
17 weso 5612 . . . 4 ( E We On → E Or On)
1816, 17ax-mp 5 . . 3 E Or On
19 soss 5549 . . 3 (dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂))
2015, 18, 19mpisyl 21 . 2 (𝜑 → E Or dom 𝑂)
218frnd 6667 . . . 4 (𝜑 → ran 𝑂𝐴)
22 wess 5607 . . . 4 (ran 𝑂𝐴 → (𝑅 We 𝐴𝑅 We ran 𝑂))
2321, 6, 22sylc 65 . . 3 (𝜑𝑅 We ran 𝑂)
24 weso 5612 . . 3 (𝑅 We ran 𝑂𝑅 Or ran 𝑂)
25 sopo 5548 . . 3 (𝑅 Or ran 𝑂𝑅 Po ran 𝑂)
2623, 24, 253syl 18 . 2 (𝜑𝑅 Po ran 𝑂)
278ffund 6663 . . 3 (𝜑 → Fun 𝑂)
28 funforn 6750 . . 3 (Fun 𝑂𝑂:dom 𝑂onto→ran 𝑂)
2927, 28sylib 218 . 2 (𝜑𝑂:dom 𝑂onto→ran 𝑂)
30 epel 5524 . . . . 5 (𝑎 E 𝑏𝑎𝑏)
311, 2, 3, 4, 5, 6, 7ordtypelem6 9420 . . . . 5 ((𝜑𝑏 ∈ dom 𝑂) → (𝑎𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3230, 31biimtrid 242 . . . 4 ((𝜑𝑏 ∈ dom 𝑂) → (𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3332ralrimiva 3125 . . 3 (𝜑 → ∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3433ralrimivw 3129 . 2 (𝜑 → ∀𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
35 soisoi 7271 . 2 ((( E Or dom 𝑂𝑅 Po ran 𝑂) ∧ (𝑂:dom 𝑂onto→ran 𝑂 ∧ ∀𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
3620, 26, 29, 34, 35syl22anc 838 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cin 3897  wss 3898   class class class wbr 5095  cmpt 5176   E cep 5520   Po wpo 5527   Or wor 5528   Se wse 5572   We wwe 5573  dom cdm 5621  ran crn 5622  cima 5624  Ord word 6313  Oncon0 6314  Fun wfun 6483  ontowfo 6487  cfv 6489   Isom wiso 6490  crio 7311  recscrecs 8299  OrdIsocoi 9406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-oi 9407
This theorem is referenced by:  ordtypelem9  9423  ordtypelem10  9424  oiiso2  9428
  Copyright terms: Public domain W3C validator