![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtypelem8 | Structured version Visualization version GIF version |
Description: Lemma for ordtype 9601. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
Ref | Expression |
---|---|
ordtypelem8 | ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
2 | ordtypelem.2 | . . . . . 6 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
3 | ordtypelem.3 | . . . . . 6 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
4 | ordtypelem.5 | . . . . . 6 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
5 | ordtypelem.6 | . . . . . 6 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
6 | ordtypelem.7 | . . . . . 6 ⊢ (𝜑 → 𝑅 We 𝐴) | |
7 | ordtypelem.8 | . . . . . 6 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9590 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
9 | 8 | fdmd 6757 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
10 | inss1 4258 | . . . . 5 ⊢ (𝑇 ∩ dom 𝐹) ⊆ 𝑇 | |
11 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9588 | . . . . . 6 ⊢ (𝜑 → Ord 𝑇) |
12 | ordsson 7818 | . . . . . 6 ⊢ (Ord 𝑇 → 𝑇 ⊆ On) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ On) |
14 | 10, 13 | sstrid 4020 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ dom 𝐹) ⊆ On) |
15 | 9, 14 | eqsstrd 4047 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ On) |
16 | epweon 7810 | . . . 4 ⊢ E We On | |
17 | weso 5691 | . . . 4 ⊢ ( E We On → E Or On) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ E Or On |
19 | soss 5628 | . . 3 ⊢ (dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂)) | |
20 | 15, 18, 19 | mpisyl 21 | . 2 ⊢ (𝜑 → E Or dom 𝑂) |
21 | 8 | frnd 6755 | . . . 4 ⊢ (𝜑 → ran 𝑂 ⊆ 𝐴) |
22 | wess 5686 | . . . 4 ⊢ (ran 𝑂 ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We ran 𝑂)) | |
23 | 21, 6, 22 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑅 We ran 𝑂) |
24 | weso 5691 | . . 3 ⊢ (𝑅 We ran 𝑂 → 𝑅 Or ran 𝑂) | |
25 | sopo 5627 | . . 3 ⊢ (𝑅 Or ran 𝑂 → 𝑅 Po ran 𝑂) | |
26 | 23, 24, 25 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑅 Po ran 𝑂) |
27 | 8 | ffund 6751 | . . 3 ⊢ (𝜑 → Fun 𝑂) |
28 | funforn 6841 | . . 3 ⊢ (Fun 𝑂 ↔ 𝑂:dom 𝑂–onto→ran 𝑂) | |
29 | 27, 28 | sylib 218 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂–onto→ran 𝑂) |
30 | epel 5602 | . . . . 5 ⊢ (𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏) | |
31 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem6 9592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 ∈ 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
32 | 30, 31 | biimtrid 242 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ dom 𝑂) → (𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
33 | 32 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
34 | 33 | ralrimivw 3156 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏))) |
35 | soisoi 7364 | . 2 ⊢ ((( E Or dom 𝑂 ∧ 𝑅 Po ran 𝑂) ∧ (𝑂:dom 𝑂–onto→ran 𝑂 ∧ ∀𝑎 ∈ dom 𝑂∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂‘𝑎)𝑅(𝑂‘𝑏)))) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | |
36 | 20, 26, 29, 34, 35 | syl22anc 838 | 1 ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 E cep 5598 Po wpo 5605 Or wor 5606 Se wse 5650 We wwe 5651 dom cdm 5700 ran crn 5701 “ cima 5703 Ord word 6394 Oncon0 6395 Fun wfun 6567 –onto→wfo 6571 ‘cfv 6573 Isom wiso 6574 ℩crio 7403 recscrecs 8426 OrdIsocoi 9578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-oi 9579 |
This theorem is referenced by: ordtypelem9 9595 ordtypelem10 9596 oiiso2 9600 |
Copyright terms: Public domain | W3C validator |