MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem8 Structured version   Visualization version   GIF version

Theorem ordtypelem8 9539
Description: Lemma for ordtype 9546. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem8 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem8
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . 6 𝐹 = recs(𝐺)
2 ordtypelem.2 . . . . . 6 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . . . . 6 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . . . . 6 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . . . . 6 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . . . . 6 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . . . . 6 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem4 9535 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
98fdmd 6716 . . . 4 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
10 inss1 4212 . . . . 5 (𝑇 ∩ dom 𝐹) ⊆ 𝑇
111, 2, 3, 4, 5, 6, 7ordtypelem2 9533 . . . . . 6 (𝜑 → Ord 𝑇)
12 ordsson 7777 . . . . . 6 (Ord 𝑇𝑇 ⊆ On)
1311, 12syl 17 . . . . 5 (𝜑𝑇 ⊆ On)
1410, 13sstrid 3970 . . . 4 (𝜑 → (𝑇 ∩ dom 𝐹) ⊆ On)
159, 14eqsstrd 3993 . . 3 (𝜑 → dom 𝑂 ⊆ On)
16 epweon 7769 . . . 4 E We On
17 weso 5645 . . . 4 ( E We On → E Or On)
1816, 17ax-mp 5 . . 3 E Or On
19 soss 5581 . . 3 (dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂))
2015, 18, 19mpisyl 21 . 2 (𝜑 → E Or dom 𝑂)
218frnd 6714 . . . 4 (𝜑 → ran 𝑂𝐴)
22 wess 5640 . . . 4 (ran 𝑂𝐴 → (𝑅 We 𝐴𝑅 We ran 𝑂))
2321, 6, 22sylc 65 . . 3 (𝜑𝑅 We ran 𝑂)
24 weso 5645 . . 3 (𝑅 We ran 𝑂𝑅 Or ran 𝑂)
25 sopo 5580 . . 3 (𝑅 Or ran 𝑂𝑅 Po ran 𝑂)
2623, 24, 253syl 18 . 2 (𝜑𝑅 Po ran 𝑂)
278ffund 6710 . . 3 (𝜑 → Fun 𝑂)
28 funforn 6797 . . 3 (Fun 𝑂𝑂:dom 𝑂onto→ran 𝑂)
2927, 28sylib 218 . 2 (𝜑𝑂:dom 𝑂onto→ran 𝑂)
30 epel 5556 . . . . 5 (𝑎 E 𝑏𝑎𝑏)
311, 2, 3, 4, 5, 6, 7ordtypelem6 9537 . . . . 5 ((𝜑𝑏 ∈ dom 𝑂) → (𝑎𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3230, 31biimtrid 242 . . . 4 ((𝜑𝑏 ∈ dom 𝑂) → (𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3332ralrimiva 3132 . . 3 (𝜑 → ∀𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
3433ralrimivw 3136 . 2 (𝜑 → ∀𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))
35 soisoi 7321 . 2 ((( E Or dom 𝑂𝑅 Po ran 𝑂) ∧ (𝑂:dom 𝑂onto→ran 𝑂 ∧ ∀𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂(𝑎 E 𝑏 → (𝑂𝑎)𝑅(𝑂𝑏)))) → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
3620, 26, 29, 34, 35syl22anc 838 1 (𝜑𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cin 3925  wss 3926   class class class wbr 5119  cmpt 5201   E cep 5552   Po wpo 5559   Or wor 5560   Se wse 5604   We wwe 5605  dom cdm 5654  ran crn 5655  cima 5657  Ord word 6351  Oncon0 6352  Fun wfun 6525  ontowfo 6529  cfv 6531   Isom wiso 6532  crio 7361  recscrecs 8384  OrdIsocoi 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-oi 9524
This theorem is referenced by:  ordtypelem9  9540  ordtypelem10  9541  oiiso2  9545
  Copyright terms: Public domain W3C validator