MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn Structured version   Visualization version   GIF version

Theorem fimacnvinrn 7005
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
fimacnvinrn (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))

Proof of Theorem fimacnvinrn
StepHypRef Expression
1 inpreima 6998 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
2 funforn 6743 . . . . 5 (Fun 𝐹𝐹:dom 𝐹onto→ran 𝐹)
3 fof 6736 . . . . 5 (𝐹:dom 𝐹onto→ran 𝐹𝐹:dom 𝐹⟶ran 𝐹)
42, 3sylbi 217 . . . 4 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
5 fimacnv 6674 . . . 4 (𝐹:dom 𝐹⟶ran 𝐹 → (𝐹 “ ran 𝐹) = dom 𝐹)
64, 5syl 17 . . 3 (Fun 𝐹 → (𝐹 “ ran 𝐹) = dom 𝐹)
76ineq2d 4171 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = ((𝐹𝐴) ∩ dom 𝐹))
8 cnvresima 6179 . . 3 ((𝐹 ↾ dom 𝐹) “ 𝐴) = ((𝐹𝐴) ∩ dom 𝐹)
9 resdm2 6180 . . . . . 6 (𝐹 ↾ dom 𝐹) = 𝐹
10 funrel 6499 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
11 dfrel2 6138 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
1210, 11sylib 218 . . . . . 6 (Fun 𝐹𝐹 = 𝐹)
139, 12eqtrid 2776 . . . . 5 (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
1413cnveqd 5818 . . . 4 (Fun 𝐹(𝐹 ↾ dom 𝐹) = 𝐹)
1514imaeq1d 6010 . . 3 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) “ 𝐴) = (𝐹𝐴))
168, 15eqtr3id 2778 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ dom 𝐹) = (𝐹𝐴))
171, 7, 163eqtrrd 2769 1 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3902  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Rel wrel 5624  Fun wfun 6476  wf 6478  ontowfo 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488
This theorem is referenced by:  fimacnvinrn2  7006  preiman0  32660  psrbasfsupp  33553
  Copyright terms: Public domain W3C validator