| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnvinrn | Structured version Visualization version GIF version | ||
| Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| fimacnvinrn | ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inpreima 6997 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹))) | |
| 2 | funforn 6742 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹–onto→ran 𝐹) | |
| 3 | fof 6735 | . . . . 5 ⊢ (𝐹:dom 𝐹–onto→ran 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) | |
| 4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (Fun 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) |
| 5 | fimacnv 6673 | . . . 4 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
| 7 | 6 | ineq2d 4167 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹)) |
| 8 | cnvresima 6177 | . . 3 ⊢ (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹) | |
| 9 | resdm2 6178 | . . . . . 6 ⊢ (𝐹 ↾ dom 𝐹) = ◡◡𝐹 | |
| 10 | funrel 6498 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 11 | dfrel2 6136 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 12 | 10, 11 | sylib 218 | . . . . . 6 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
| 13 | 9, 12 | eqtrid 2778 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) |
| 14 | 13 | cnveqd 5814 | . . . 4 ⊢ (Fun 𝐹 → ◡(𝐹 ↾ dom 𝐹) = ◡𝐹) |
| 15 | 14 | imaeq1d 6007 | . . 3 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = (◡𝐹 “ 𝐴)) |
| 16 | 8, 15 | eqtr3id 2780 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ dom 𝐹) = (◡𝐹 “ 𝐴)) |
| 17 | 1, 7, 16 | 3eqtrrd 2771 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3896 ◡ccnv 5613 dom cdm 5614 ran crn 5615 ↾ cres 5616 “ cima 5617 Rel wrel 5619 Fun wfun 6475 ⟶wf 6477 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 |
| This theorem is referenced by: fimacnvinrn2 7005 preiman0 32691 psrbasfsupp 33572 |
| Copyright terms: Public domain | W3C validator |