MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn Structured version   Visualization version   GIF version

Theorem fimacnvinrn 7091
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
fimacnvinrn (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))

Proof of Theorem fimacnvinrn
StepHypRef Expression
1 inpreima 7084 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
2 funforn 6828 . . . . 5 (Fun 𝐹𝐹:dom 𝐹onto→ran 𝐹)
3 fof 6821 . . . . 5 (𝐹:dom 𝐹onto→ran 𝐹𝐹:dom 𝐹⟶ran 𝐹)
42, 3sylbi 217 . . . 4 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
5 fimacnv 6759 . . . 4 (𝐹:dom 𝐹⟶ran 𝐹 → (𝐹 “ ran 𝐹) = dom 𝐹)
64, 5syl 17 . . 3 (Fun 𝐹 → (𝐹 “ ran 𝐹) = dom 𝐹)
76ineq2d 4228 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = ((𝐹𝐴) ∩ dom 𝐹))
8 cnvresima 6252 . . 3 ((𝐹 ↾ dom 𝐹) “ 𝐴) = ((𝐹𝐴) ∩ dom 𝐹)
9 resdm2 6253 . . . . . 6 (𝐹 ↾ dom 𝐹) = 𝐹
10 funrel 6585 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
11 dfrel2 6211 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
1210, 11sylib 218 . . . . . 6 (Fun 𝐹𝐹 = 𝐹)
139, 12eqtrid 2787 . . . . 5 (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
1413cnveqd 5889 . . . 4 (Fun 𝐹(𝐹 ↾ dom 𝐹) = 𝐹)
1514imaeq1d 6079 . . 3 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) “ 𝐴) = (𝐹𝐴))
168, 15eqtr3id 2789 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ dom 𝐹) = (𝐹𝐴))
171, 7, 163eqtrrd 2780 1 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3962  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  Rel wrel 5694  Fun wfun 6557  wf 6559  ontowfo 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569
This theorem is referenced by:  fimacnvinrn2  7092  preiman0  32725
  Copyright terms: Public domain W3C validator