![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnvinrn | Structured version Visualization version GIF version |
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
fimacnvinrn | ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 7065 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹))) | |
2 | funforn 6812 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹–onto→ran 𝐹) | |
3 | fof 6805 | . . . . 5 ⊢ (𝐹:dom 𝐹–onto→ran 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) | |
4 | 2, 3 | sylbi 216 | . . . 4 ⊢ (Fun 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) |
5 | fimacnv 6739 | . . . 4 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
7 | 6 | ineq2d 4212 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹)) |
8 | cnvresima 6229 | . . 3 ⊢ (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹) | |
9 | resdm2 6230 | . . . . . 6 ⊢ (𝐹 ↾ dom 𝐹) = ◡◡𝐹 | |
10 | funrel 6565 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
11 | dfrel2 6188 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
12 | 10, 11 | sylib 217 | . . . . . 6 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
13 | 9, 12 | eqtrid 2783 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) |
14 | 13 | cnveqd 5875 | . . . 4 ⊢ (Fun 𝐹 → ◡(𝐹 ↾ dom 𝐹) = ◡𝐹) |
15 | 14 | imaeq1d 6058 | . . 3 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = (◡𝐹 “ 𝐴)) |
16 | 8, 15 | eqtr3id 2785 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ dom 𝐹) = (◡𝐹 “ 𝐴)) |
17 | 1, 7, 16 | 3eqtrrd 2776 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∩ cin 3947 ◡ccnv 5675 dom cdm 5676 ran crn 5677 ↾ cres 5678 “ cima 5679 Rel wrel 5681 Fun wfun 6537 ⟶wf 6539 –onto→wfo 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 |
This theorem is referenced by: fimacnvinrn2 7074 preiman0 32364 |
Copyright terms: Public domain | W3C validator |