![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnvinrn | Structured version Visualization version GIF version |
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
fimacnvinrn | β’ (Fun πΉ β (β‘πΉ β π΄) = (β‘πΉ β (π΄ β© ran πΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 7062 | . 2 β’ (Fun πΉ β (β‘πΉ β (π΄ β© ran πΉ)) = ((β‘πΉ β π΄) β© (β‘πΉ β ran πΉ))) | |
2 | funforn 6809 | . . . . 5 β’ (Fun πΉ β πΉ:dom πΉβontoβran πΉ) | |
3 | fof 6802 | . . . . 5 β’ (πΉ:dom πΉβontoβran πΉ β πΉ:dom πΉβΆran πΉ) | |
4 | 2, 3 | sylbi 216 | . . . 4 β’ (Fun πΉ β πΉ:dom πΉβΆran πΉ) |
5 | fimacnv 6736 | . . . 4 β’ (πΉ:dom πΉβΆran πΉ β (β‘πΉ β ran πΉ) = dom πΉ) | |
6 | 4, 5 | syl 17 | . . 3 β’ (Fun πΉ β (β‘πΉ β ran πΉ) = dom πΉ) |
7 | 6 | ineq2d 4211 | . 2 β’ (Fun πΉ β ((β‘πΉ β π΄) β© (β‘πΉ β ran πΉ)) = ((β‘πΉ β π΄) β© dom πΉ)) |
8 | cnvresima 6226 | . . 3 β’ (β‘(πΉ βΎ dom πΉ) β π΄) = ((β‘πΉ β π΄) β© dom πΉ) | |
9 | resdm2 6227 | . . . . . 6 β’ (πΉ βΎ dom πΉ) = β‘β‘πΉ | |
10 | funrel 6562 | . . . . . . 7 β’ (Fun πΉ β Rel πΉ) | |
11 | dfrel2 6185 | . . . . . . 7 β’ (Rel πΉ β β‘β‘πΉ = πΉ) | |
12 | 10, 11 | sylib 217 | . . . . . 6 β’ (Fun πΉ β β‘β‘πΉ = πΉ) |
13 | 9, 12 | eqtrid 2784 | . . . . 5 β’ (Fun πΉ β (πΉ βΎ dom πΉ) = πΉ) |
14 | 13 | cnveqd 5873 | . . . 4 β’ (Fun πΉ β β‘(πΉ βΎ dom πΉ) = β‘πΉ) |
15 | 14 | imaeq1d 6056 | . . 3 β’ (Fun πΉ β (β‘(πΉ βΎ dom πΉ) β π΄) = (β‘πΉ β π΄)) |
16 | 8, 15 | eqtr3id 2786 | . 2 β’ (Fun πΉ β ((β‘πΉ β π΄) β© dom πΉ) = (β‘πΉ β π΄)) |
17 | 1, 7, 16 | 3eqtrrd 2777 | 1 β’ (Fun πΉ β (β‘πΉ β π΄) = (β‘πΉ β (π΄ β© ran πΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β© cin 3946 β‘ccnv 5674 dom cdm 5675 ran crn 5676 βΎ cres 5677 β cima 5678 Rel wrel 5680 Fun wfun 6534 βΆwf 6536 βontoβwfo 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 |
This theorem is referenced by: fimacnvinrn2 7071 preiman0 31918 |
Copyright terms: Public domain | W3C validator |