| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnvinrn | Structured version Visualization version GIF version | ||
| Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| fimacnvinrn | ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inpreima 7036 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹))) | |
| 2 | funforn 6779 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹–onto→ran 𝐹) | |
| 3 | fof 6772 | . . . . 5 ⊢ (𝐹:dom 𝐹–onto→ran 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) | |
| 4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (Fun 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) |
| 5 | fimacnv 6710 | . . . 4 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
| 7 | 6 | ineq2d 4183 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹)) |
| 8 | cnvresima 6203 | . . 3 ⊢ (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹) | |
| 9 | resdm2 6204 | . . . . . 6 ⊢ (𝐹 ↾ dom 𝐹) = ◡◡𝐹 | |
| 10 | funrel 6533 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 11 | dfrel2 6162 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 12 | 10, 11 | sylib 218 | . . . . . 6 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
| 13 | 9, 12 | eqtrid 2776 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) |
| 14 | 13 | cnveqd 5839 | . . . 4 ⊢ (Fun 𝐹 → ◡(𝐹 ↾ dom 𝐹) = ◡𝐹) |
| 15 | 14 | imaeq1d 6030 | . . 3 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = (◡𝐹 “ 𝐴)) |
| 16 | 8, 15 | eqtr3id 2778 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ dom 𝐹) = (◡𝐹 “ 𝐴)) |
| 17 | 1, 7, 16 | 3eqtrrd 2769 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Rel wrel 5643 Fun wfun 6505 ⟶wf 6507 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 |
| This theorem is referenced by: fimacnvinrn2 7044 preiman0 32633 |
| Copyright terms: Public domain | W3C validator |