MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn Structured version   Visualization version   GIF version

Theorem fimacnvinrn 7070
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
fimacnvinrn (Fun 𝐹 β†’ (◑𝐹 β€œ 𝐴) = (◑𝐹 β€œ (𝐴 ∩ ran 𝐹)))

Proof of Theorem fimacnvinrn
StepHypRef Expression
1 inpreima 7062 . 2 (Fun 𝐹 β†’ (◑𝐹 β€œ (𝐴 ∩ ran 𝐹)) = ((◑𝐹 β€œ 𝐴) ∩ (◑𝐹 β€œ ran 𝐹)))
2 funforn 6809 . . . . 5 (Fun 𝐹 ↔ 𝐹:dom 𝐹–ontoβ†’ran 𝐹)
3 fof 6802 . . . . 5 (𝐹:dom 𝐹–ontoβ†’ran 𝐹 β†’ 𝐹:dom 𝐹⟢ran 𝐹)
42, 3sylbi 216 . . . 4 (Fun 𝐹 β†’ 𝐹:dom 𝐹⟢ran 𝐹)
5 fimacnv 6736 . . . 4 (𝐹:dom 𝐹⟢ran 𝐹 β†’ (◑𝐹 β€œ ran 𝐹) = dom 𝐹)
64, 5syl 17 . . 3 (Fun 𝐹 β†’ (◑𝐹 β€œ ran 𝐹) = dom 𝐹)
76ineq2d 4211 . 2 (Fun 𝐹 β†’ ((◑𝐹 β€œ 𝐴) ∩ (◑𝐹 β€œ ran 𝐹)) = ((◑𝐹 β€œ 𝐴) ∩ dom 𝐹))
8 cnvresima 6226 . . 3 (β—‘(𝐹 β†Ύ dom 𝐹) β€œ 𝐴) = ((◑𝐹 β€œ 𝐴) ∩ dom 𝐹)
9 resdm2 6227 . . . . . 6 (𝐹 β†Ύ dom 𝐹) = ◑◑𝐹
10 funrel 6562 . . . . . . 7 (Fun 𝐹 β†’ Rel 𝐹)
11 dfrel2 6185 . . . . . . 7 (Rel 𝐹 ↔ ◑◑𝐹 = 𝐹)
1210, 11sylib 217 . . . . . 6 (Fun 𝐹 β†’ ◑◑𝐹 = 𝐹)
139, 12eqtrid 2784 . . . . 5 (Fun 𝐹 β†’ (𝐹 β†Ύ dom 𝐹) = 𝐹)
1413cnveqd 5873 . . . 4 (Fun 𝐹 β†’ β—‘(𝐹 β†Ύ dom 𝐹) = ◑𝐹)
1514imaeq1d 6056 . . 3 (Fun 𝐹 β†’ (β—‘(𝐹 β†Ύ dom 𝐹) β€œ 𝐴) = (◑𝐹 β€œ 𝐴))
168, 15eqtr3id 2786 . 2 (Fun 𝐹 β†’ ((◑𝐹 β€œ 𝐴) ∩ dom 𝐹) = (◑𝐹 β€œ 𝐴))
171, 7, 163eqtrrd 2777 1 (Fun 𝐹 β†’ (◑𝐹 β€œ 𝐴) = (◑𝐹 β€œ (𝐴 ∩ ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∩ cin 3946  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678  Rel wrel 5680  Fun wfun 6534  βŸΆwf 6536  β€“ontoβ†’wfo 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546
This theorem is referenced by:  fimacnvinrn2  7071  preiman0  31918
  Copyright terms: Public domain W3C validator