MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvinrn Structured version   Visualization version   GIF version

Theorem fimacnvinrn 7043
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
fimacnvinrn (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))

Proof of Theorem fimacnvinrn
StepHypRef Expression
1 inpreima 7036 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∩ ran 𝐹)) = ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)))
2 funforn 6779 . . . . 5 (Fun 𝐹𝐹:dom 𝐹onto→ran 𝐹)
3 fof 6772 . . . . 5 (𝐹:dom 𝐹onto→ran 𝐹𝐹:dom 𝐹⟶ran 𝐹)
42, 3sylbi 217 . . . 4 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
5 fimacnv 6710 . . . 4 (𝐹:dom 𝐹⟶ran 𝐹 → (𝐹 “ ran 𝐹) = dom 𝐹)
64, 5syl 17 . . 3 (Fun 𝐹 → (𝐹 “ ran 𝐹) = dom 𝐹)
76ineq2d 4183 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ (𝐹 “ ran 𝐹)) = ((𝐹𝐴) ∩ dom 𝐹))
8 cnvresima 6203 . . 3 ((𝐹 ↾ dom 𝐹) “ 𝐴) = ((𝐹𝐴) ∩ dom 𝐹)
9 resdm2 6204 . . . . . 6 (𝐹 ↾ dom 𝐹) = 𝐹
10 funrel 6533 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
11 dfrel2 6162 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
1210, 11sylib 218 . . . . . 6 (Fun 𝐹𝐹 = 𝐹)
139, 12eqtrid 2776 . . . . 5 (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
1413cnveqd 5839 . . . 4 (Fun 𝐹(𝐹 ↾ dom 𝐹) = 𝐹)
1514imaeq1d 6030 . . 3 (Fun 𝐹 → ((𝐹 ↾ dom 𝐹) “ 𝐴) = (𝐹𝐴))
168, 15eqtr3id 2778 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ dom 𝐹) = (𝐹𝐴))
171, 7, 163eqtrrd 2769 1 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ (𝐴 ∩ ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3913  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Rel wrel 5643  Fun wfun 6505  wf 6507  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517
This theorem is referenced by:  fimacnvinrn2  7044  preiman0  32633
  Copyright terms: Public domain W3C validator