![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnvinrn | Structured version Visualization version GIF version |
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
fimacnvinrn | ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 7097 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹))) | |
2 | funforn 6841 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹–onto→ran 𝐹) | |
3 | fof 6834 | . . . . 5 ⊢ (𝐹:dom 𝐹–onto→ran 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) | |
4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (Fun 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) |
5 | fimacnv 6769 | . . . 4 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
7 | 6 | ineq2d 4241 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹)) |
8 | cnvresima 6261 | . . 3 ⊢ (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹) | |
9 | resdm2 6262 | . . . . . 6 ⊢ (𝐹 ↾ dom 𝐹) = ◡◡𝐹 | |
10 | funrel 6595 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
11 | dfrel2 6220 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
12 | 10, 11 | sylib 218 | . . . . . 6 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
13 | 9, 12 | eqtrid 2792 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) |
14 | 13 | cnveqd 5900 | . . . 4 ⊢ (Fun 𝐹 → ◡(𝐹 ↾ dom 𝐹) = ◡𝐹) |
15 | 14 | imaeq1d 6088 | . . 3 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = (◡𝐹 “ 𝐴)) |
16 | 8, 15 | eqtr3id 2794 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ dom 𝐹) = (◡𝐹 “ 𝐴)) |
17 | 1, 7, 16 | 3eqtrrd 2785 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3975 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 Rel wrel 5705 Fun wfun 6567 ⟶wf 6569 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 |
This theorem is referenced by: fimacnvinrn2 7106 preiman0 32721 |
Copyright terms: Public domain | W3C validator |