| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imadomg | Structured version Visualization version GIF version | ||
| Description: An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| imadomg | ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | resfunexg 7189 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴) ∈ V) | |
| 3 | 2 | dmexd 7879 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → dom (𝐹 ↾ 𝐴) ∈ V) |
| 4 | funres 6558 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 5 | funforn 6779 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
| 6 | 4, 5 | sylib 218 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
| 8 | fodomg 10475 | . . . . 5 ⊢ (dom (𝐹 ↾ 𝐴) ∈ V → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) | |
| 9 | 3, 7, 8 | sylc 65 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
| 10 | 1, 9 | eqbrtrid 5142 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
| 11 | 10 | expcom 413 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) |
| 12 | dmres 5983 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
| 13 | inss1 4200 | . . . . . 6 ⊢ (𝐴 ∩ dom 𝐹) ⊆ 𝐴 | |
| 14 | 12, 13 | eqsstri 3993 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 |
| 15 | ssdomg 8971 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
| 16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
| 17 | domtr 8978 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
| 18 | 16, 17 | sylan2 593 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ 𝐴) |
| 19 | 18 | expcom 413 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴)) |
| 20 | 11, 19 | syld 47 | 1 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Fun wfun 6505 –onto→wfo 6509 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-card 9892 df-acn 9895 df-ac 10069 |
| This theorem is referenced by: fimact 10488 uniimadom 10497 hausmapdom 23387 madefi 27824 |
| Copyright terms: Public domain | W3C validator |