![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imadomg | Structured version Visualization version GIF version |
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
imadomg | ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5355 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | resfunexg 6735 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴) ∈ V) | |
3 | 2 | dmexd 7360 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → dom (𝐹 ↾ 𝐴) ∈ V) |
4 | funres 6165 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
5 | funforn 6360 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
6 | 4, 5 | sylib 210 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
7 | 6 | adantr 474 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
8 | fodomg 9660 | . . . . 5 ⊢ (dom (𝐹 ↾ 𝐴) ∈ V → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) | |
9 | 3, 7, 8 | sylc 65 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
10 | 1, 9 | syl5eqbr 4908 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
11 | 10 | expcom 404 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) |
12 | dmres 5655 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
13 | inss1 4057 | . . . . . 6 ⊢ (𝐴 ∩ dom 𝐹) ⊆ 𝐴 | |
14 | 12, 13 | eqsstri 3860 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 |
15 | ssdomg 8268 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
17 | domtr 8275 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
18 | 16, 17 | sylan2 586 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | 18 | expcom 404 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴)) |
20 | 11, 19 | syld 47 | 1 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 Vcvv 3414 ∩ cin 3797 ⊆ wss 3798 class class class wbr 4873 dom cdm 5342 ran crn 5343 ↾ cres 5344 “ cima 5345 Fun wfun 6117 –onto→wfo 6121 ≼ cdom 8220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-ac2 9600 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-card 9078 df-acn 9081 df-ac 9252 |
This theorem is referenced by: fimact 9672 uniimadom 9681 hausmapdom 21674 |
Copyright terms: Public domain | W3C validator |