Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imadomg | Structured version Visualization version GIF version |
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
imadomg | ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5602 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | resfunexg 7091 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴) ∈ V) | |
3 | 2 | dmexd 7752 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → dom (𝐹 ↾ 𝐴) ∈ V) |
4 | funres 6476 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
5 | funforn 6695 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
8 | fodomg 10278 | . . . . 5 ⊢ (dom (𝐹 ↾ 𝐴) ∈ V → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) | |
9 | 3, 7, 8 | sylc 65 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
10 | 1, 9 | eqbrtrid 5109 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
11 | 10 | expcom 414 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) |
12 | dmres 5913 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
13 | inss1 4162 | . . . . . 6 ⊢ (𝐴 ∩ dom 𝐹) ⊆ 𝐴 | |
14 | 12, 13 | eqsstri 3955 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 |
15 | ssdomg 8786 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
17 | domtr 8793 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
18 | 16, 17 | sylan2 593 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | 18 | expcom 414 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴)) |
20 | 11, 19 | syld 47 | 1 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Fun wfun 6427 –onto→wfo 6431 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-card 9697 df-acn 9700 df-ac 9872 |
This theorem is referenced by: fimact 10291 uniimadom 10300 hausmapdom 22651 |
Copyright terms: Public domain | W3C validator |