Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imadomg | Structured version Visualization version GIF version |
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
imadomg | ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5593 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | resfunexg 7073 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴) ∈ V) | |
3 | 2 | dmexd 7726 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → dom (𝐹 ↾ 𝐴) ∈ V) |
4 | funres 6460 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
5 | funforn 6679 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
8 | fodomg 10209 | . . . . 5 ⊢ (dom (𝐹 ↾ 𝐴) ∈ V → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) | |
9 | 3, 7, 8 | sylc 65 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
10 | 1, 9 | eqbrtrid 5105 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
11 | 10 | expcom 413 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) |
12 | dmres 5902 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
13 | inss1 4159 | . . . . . 6 ⊢ (𝐴 ∩ dom 𝐹) ⊆ 𝐴 | |
14 | 12, 13 | eqsstri 3951 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 |
15 | ssdomg 8741 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
17 | domtr 8748 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
18 | 16, 17 | sylan2 592 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | 18 | expcom 413 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴)) |
20 | 11, 19 | syld 47 | 1 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 Fun wfun 6412 –onto→wfo 6416 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-card 9628 df-acn 9631 df-ac 9803 |
This theorem is referenced by: fimact 10222 uniimadom 10231 hausmapdom 22559 |
Copyright terms: Public domain | W3C validator |