![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imadomg | Structured version Visualization version GIF version |
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
imadomg | ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5680 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
2 | resfunexg 7209 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴) ∈ V) | |
3 | 2 | dmexd 7890 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → dom (𝐹 ↾ 𝐴) ∈ V) |
4 | funres 6581 | . . . . . . 7 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
5 | funforn 6803 | . . . . . . 7 ⊢ (Fun (𝐹 ↾ 𝐴) ↔ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴)) |
8 | fodomg 10514 | . . . . 5 ⊢ (dom (𝐹 ↾ 𝐴) ∈ V → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)–onto→ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) | |
9 | 3, 7, 8 | sylc 65 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → ran (𝐹 ↾ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
10 | 1, 9 | eqbrtrid 5174 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴)) |
11 | 10 | expcom 413 | . 2 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴))) |
12 | dmres 5994 | . . . . . 6 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
13 | inss1 4221 | . . . . . 6 ⊢ (𝐴 ∩ dom 𝐹) ⊆ 𝐴 | |
14 | 12, 13 | eqsstri 4009 | . . . . 5 ⊢ dom (𝐹 ↾ 𝐴) ⊆ 𝐴 |
15 | ssdomg 8993 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (dom (𝐹 ↾ 𝐴) ⊆ 𝐴 → dom (𝐹 ↾ 𝐴) ≼ 𝐴)) | |
16 | 14, 15 | mpi 20 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → dom (𝐹 ↾ 𝐴) ≼ 𝐴) |
17 | domtr 9000 | . . . 4 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) ≼ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴) | |
18 | 16, 17 | sylan2 592 | . . 3 ⊢ (((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) ∧ 𝐴 ∈ 𝐵) → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | 18 | expcom 413 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 “ 𝐴) ≼ dom (𝐹 ↾ 𝐴) → (𝐹 “ 𝐴) ≼ 𝐴)) |
20 | 11, 19 | syld 47 | 1 ⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 Vcvv 3466 ∩ cin 3940 ⊆ wss 3941 class class class wbr 5139 dom cdm 5667 ran crn 5668 ↾ cres 5669 “ cima 5670 Fun wfun 6528 –onto→wfo 6532 ≼ cdom 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-ac2 10455 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-card 9931 df-acn 9934 df-ac 10108 |
This theorem is referenced by: fimact 10527 uniimadom 10536 hausmapdom 23328 |
Copyright terms: Public domain | W3C validator |