![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 β’ ran πΉ = ran πΉ | |
2 | 1 | biantru 528 | . 2 β’ (πΉ Fn π΄ β (πΉ Fn π΄ β§ ran πΉ = ran πΉ)) |
3 | df-fo 6553 | . 2 β’ (πΉ:π΄βontoβran πΉ β (πΉ Fn π΄ β§ ran πΉ = ran πΉ)) | |
4 | 2, 3 | bitr4i 277 | 1 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 394 = wceq 1533 ran crn 5678 Fn wfn 6542 βontoβwfo 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2717 df-fo 6553 |
This theorem is referenced by: funforn 6815 fimadmfo 6817 ffoss 7948 tposf2 8254 rneqdmfinf1o 9352 fidomdm 9353 pwfilemOLD 9370 indexfi 9384 intrnfi 9439 fifo 9455 ixpiunwdom 9613 infpwfien 10085 infmap2 10241 cfflb 10282 cfslb2n 10291 ttukeylem6 10537 dmct 10547 fnrndomg 10559 rankcf 10800 tskuni 10806 tskurn 10812 fseqsupcl 13974 vdwlem6 16954 0ram2 16989 0ramcl 16991 quslem 17524 gsumval3 19866 gsumzoppg 19903 mplsubrglem 21953 rncmp 23330 cmpsub 23334 tgcmp 23335 hauscmplem 23340 conncn 23360 2ndcctbss 23389 2ndcomap 23392 2ndcsep 23393 comppfsc 23466 ptcnplem 23555 txtube 23574 txcmplem1 23575 tx1stc 23584 tx2ndc 23585 qtopid 23639 qtopcmplem 23641 qtopkgen 23644 kqtopon 23661 kqopn 23668 kqcld 23669 qtopf1 23750 rnelfm 23887 fmfnfmlem2 23889 fmfnfm 23892 alexsubALT 23985 ptcmplem2 23987 tmdgsum2 24030 tsmsxplem1 24087 met1stc 24460 met2ndci 24461 uniiccdif 25537 dyadmbl 25559 mbfimaopnlem 25614 i1fadd 25654 i1fmul 25655 itg1addlem4OLD 25659 i1fmulc 25663 mbfi1fseqlem4 25678 limciun 25853 aannenlem3 26295 efabl 26514 logccv 26627 locfinreflem 33511 mvrsfpw 35186 msrfo 35226 mtyf 35232 bj-inftyexpitaufo 36751 itg2addnclem2 37215 istotbnd3 37314 sstotbnd 37318 prdsbnd 37336 cntotbnd 37339 heiborlem1 37354 heibor 37364 dihintcl 40886 focofob 46523 |
Copyright terms: Public domain | W3C validator |