| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version | ||
| Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
| 3 | df-fo 6517 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fo 6517 |
| This theorem is referenced by: funforn 6779 fimadmfo 6781 ffoss 7924 tposf2 8229 rneqdmfinf1o 9284 fidomdm 9285 indexfi 9311 intrnfi 9367 fifo 9383 ixpiunwdom 9543 infpwfien 10015 infmap2 10170 cfflb 10212 cfslb2n 10221 ttukeylem6 10467 dmct 10477 fnrndomg 10489 rankcf 10730 tskuni 10736 tskurn 10742 fseqsupcl 13942 s7f1o 14932 vdwlem6 16957 0ram2 16992 0ramcl 16994 quslem 17506 gsumval3 19837 gsumzoppg 19874 mplsubrglem 21913 rncmp 23283 cmpsub 23287 tgcmp 23288 hauscmplem 23293 conncn 23313 2ndcctbss 23342 2ndcomap 23345 2ndcsep 23346 comppfsc 23419 ptcnplem 23508 txtube 23527 txcmplem1 23528 tx1stc 23537 tx2ndc 23538 qtopid 23592 qtopcmplem 23594 qtopkgen 23597 kqtopon 23614 kqopn 23621 kqcld 23622 qtopf1 23703 rnelfm 23840 fmfnfmlem2 23842 fmfnfm 23845 alexsubALT 23938 ptcmplem2 23940 tmdgsum2 23983 tsmsxplem1 24040 met1stc 24409 met2ndci 24410 uniiccdif 25479 dyadmbl 25501 mbfimaopnlem 25556 i1fadd 25596 i1fmul 25597 i1fmulc 25604 mbfi1fseqlem4 25619 limciun 25795 aannenlem3 26238 efabl 26459 logccv 26572 locfinreflem 33830 mvrsfpw 35493 msrfo 35533 mtyf 35539 bj-inftyexpitaufo 37190 itg2addnclem2 37666 istotbnd3 37765 sstotbnd 37769 prdsbnd 37787 cntotbnd 37790 heiborlem1 37805 heibor 37815 dihintcl 41338 focofob 47081 |
| Copyright terms: Public domain | W3C validator |