| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version | ||
| Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
| 3 | df-fo 6483 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ran crn 5615 Fn wfn 6472 –onto→wfo 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2722 df-fo 6483 |
| This theorem is referenced by: funforn 6738 fimadmfo 6740 ffoss 7873 tposf2 8175 rneqdmfinf1o 9212 fidomdm 9213 indexfi 9239 intrnfi 9295 fifo 9311 ixpiunwdom 9471 infpwfien 9945 infmap2 10100 cfflb 10142 cfslb2n 10151 ttukeylem6 10397 dmct 10407 fnrndomg 10419 rankcf 10660 tskuni 10666 tskurn 10672 fseqsupcl 13876 s7f1o 14865 vdwlem6 16890 0ram2 16925 0ramcl 16927 quslem 17439 gsumval3 19812 gsumzoppg 19849 mplsubrglem 21934 rncmp 23304 cmpsub 23308 tgcmp 23309 hauscmplem 23314 conncn 23334 2ndcctbss 23363 2ndcomap 23366 2ndcsep 23367 comppfsc 23440 ptcnplem 23529 txtube 23548 txcmplem1 23549 tx1stc 23558 tx2ndc 23559 qtopid 23613 qtopcmplem 23615 qtopkgen 23618 kqtopon 23635 kqopn 23642 kqcld 23643 qtopf1 23724 rnelfm 23861 fmfnfmlem2 23863 fmfnfm 23866 alexsubALT 23959 ptcmplem2 23961 tmdgsum2 24004 tsmsxplem1 24061 met1stc 24429 met2ndci 24430 uniiccdif 25499 dyadmbl 25521 mbfimaopnlem 25576 i1fadd 25616 i1fmul 25617 i1fmulc 25624 mbfi1fseqlem4 25639 limciun 25815 aannenlem3 26258 efabl 26479 logccv 26592 locfinreflem 33843 mvrsfpw 35518 msrfo 35558 mtyf 35564 bj-inftyexpitaufo 37215 itg2addnclem2 37691 istotbnd3 37790 sstotbnd 37794 prdsbnd 37812 cntotbnd 37815 heiborlem1 37830 heibor 37840 dihintcl 41362 focofob 47090 |
| Copyright terms: Public domain | W3C validator |