![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
3 | df-fo 6579 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ran crn 5701 Fn wfn 6568 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fo 6579 |
This theorem is referenced by: funforn 6841 fimadmfo 6843 ffoss 7986 tposf2 8291 rneqdmfinf1o 9401 fidomdm 9402 pwfilemOLD 9416 indexfi 9430 intrnfi 9485 fifo 9501 ixpiunwdom 9659 infpwfien 10131 infmap2 10286 cfflb 10328 cfslb2n 10337 ttukeylem6 10583 dmct 10593 fnrndomg 10605 rankcf 10846 tskuni 10852 tskurn 10858 fseqsupcl 14028 s7f1o 15015 vdwlem6 17033 0ram2 17068 0ramcl 17070 quslem 17603 gsumval3 19949 gsumzoppg 19986 mplsubrglem 22047 rncmp 23425 cmpsub 23429 tgcmp 23430 hauscmplem 23435 conncn 23455 2ndcctbss 23484 2ndcomap 23487 2ndcsep 23488 comppfsc 23561 ptcnplem 23650 txtube 23669 txcmplem1 23670 tx1stc 23679 tx2ndc 23680 qtopid 23734 qtopcmplem 23736 qtopkgen 23739 kqtopon 23756 kqopn 23763 kqcld 23764 qtopf1 23845 rnelfm 23982 fmfnfmlem2 23984 fmfnfm 23987 alexsubALT 24080 ptcmplem2 24082 tmdgsum2 24125 tsmsxplem1 24182 met1stc 24555 met2ndci 24556 uniiccdif 25632 dyadmbl 25654 mbfimaopnlem 25709 i1fadd 25749 i1fmul 25750 itg1addlem4OLD 25754 i1fmulc 25758 mbfi1fseqlem4 25773 limciun 25949 aannenlem3 26390 efabl 26610 logccv 26723 locfinreflem 33786 mvrsfpw 35474 msrfo 35514 mtyf 35520 bj-inftyexpitaufo 37168 itg2addnclem2 37632 istotbnd3 37731 sstotbnd 37735 prdsbnd 37753 cntotbnd 37756 heiborlem1 37771 heibor 37781 dihintcl 41301 focofob 46995 |
Copyright terms: Public domain | W3C validator |