| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version | ||
| Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
| 3 | df-fo 6492 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5624 Fn wfn 6481 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fo 6492 |
| This theorem is referenced by: funforn 6747 fimadmfo 6749 ffoss 7888 tposf2 8190 rneqdmfinf1o 9242 fidomdm 9243 indexfi 9269 intrnfi 9325 fifo 9341 ixpiunwdom 9501 infpwfien 9975 infmap2 10130 cfflb 10172 cfslb2n 10181 ttukeylem6 10427 dmct 10437 fnrndomg 10449 rankcf 10690 tskuni 10696 tskurn 10702 fseqsupcl 13902 s7f1o 14891 vdwlem6 16916 0ram2 16951 0ramcl 16953 quslem 17465 gsumval3 19804 gsumzoppg 19841 mplsubrglem 21929 rncmp 23299 cmpsub 23303 tgcmp 23304 hauscmplem 23309 conncn 23329 2ndcctbss 23358 2ndcomap 23361 2ndcsep 23362 comppfsc 23435 ptcnplem 23524 txtube 23543 txcmplem1 23544 tx1stc 23553 tx2ndc 23554 qtopid 23608 qtopcmplem 23610 qtopkgen 23613 kqtopon 23630 kqopn 23637 kqcld 23638 qtopf1 23719 rnelfm 23856 fmfnfmlem2 23858 fmfnfm 23861 alexsubALT 23954 ptcmplem2 23956 tmdgsum2 23999 tsmsxplem1 24056 met1stc 24425 met2ndci 24426 uniiccdif 25495 dyadmbl 25517 mbfimaopnlem 25572 i1fadd 25612 i1fmul 25613 i1fmulc 25620 mbfi1fseqlem4 25635 limciun 25811 aannenlem3 26254 efabl 26475 logccv 26588 locfinreflem 33806 mvrsfpw 35478 msrfo 35518 mtyf 35524 bj-inftyexpitaufo 37175 itg2addnclem2 37651 istotbnd3 37750 sstotbnd 37754 prdsbnd 37772 cntotbnd 37775 heiborlem1 37790 heibor 37800 dihintcl 41323 focofob 47065 |
| Copyright terms: Public domain | W3C validator |