| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version | ||
| Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
| 3 | df-fo 6542 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5660 Fn wfn 6531 –onto→wfo 6534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-fo 6542 |
| This theorem is referenced by: funforn 6802 fimadmfo 6804 ffoss 7949 tposf2 8254 rneqdmfinf1o 9350 fidomdm 9351 indexfi 9377 intrnfi 9433 fifo 9449 ixpiunwdom 9609 infpwfien 10081 infmap2 10236 cfflb 10278 cfslb2n 10287 ttukeylem6 10533 dmct 10543 fnrndomg 10555 rankcf 10796 tskuni 10802 tskurn 10808 fseqsupcl 14000 s7f1o 14990 vdwlem6 17011 0ram2 17046 0ramcl 17048 quslem 17562 gsumval3 19893 gsumzoppg 19930 mplsubrglem 21969 rncmp 23339 cmpsub 23343 tgcmp 23344 hauscmplem 23349 conncn 23369 2ndcctbss 23398 2ndcomap 23401 2ndcsep 23402 comppfsc 23475 ptcnplem 23564 txtube 23583 txcmplem1 23584 tx1stc 23593 tx2ndc 23594 qtopid 23648 qtopcmplem 23650 qtopkgen 23653 kqtopon 23670 kqopn 23677 kqcld 23678 qtopf1 23759 rnelfm 23896 fmfnfmlem2 23898 fmfnfm 23901 alexsubALT 23994 ptcmplem2 23996 tmdgsum2 24039 tsmsxplem1 24096 met1stc 24465 met2ndci 24466 uniiccdif 25536 dyadmbl 25558 mbfimaopnlem 25613 i1fadd 25653 i1fmul 25654 i1fmulc 25661 mbfi1fseqlem4 25676 limciun 25852 aannenlem3 26295 efabl 26516 logccv 26629 locfinreflem 33876 mvrsfpw 35533 msrfo 35573 mtyf 35579 bj-inftyexpitaufo 37225 itg2addnclem2 37701 istotbnd3 37800 sstotbnd 37804 prdsbnd 37822 cntotbnd 37825 heiborlem1 37840 heibor 37850 dihintcl 41368 focofob 47089 |
| Copyright terms: Public domain | W3C validator |