| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version | ||
| Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
| 3 | df-fo 6520 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fo 6520 |
| This theorem is referenced by: funforn 6782 fimadmfo 6784 ffoss 7927 tposf2 8232 rneqdmfinf1o 9291 fidomdm 9292 indexfi 9318 intrnfi 9374 fifo 9390 ixpiunwdom 9550 infpwfien 10022 infmap2 10177 cfflb 10219 cfslb2n 10228 ttukeylem6 10474 dmct 10484 fnrndomg 10496 rankcf 10737 tskuni 10743 tskurn 10749 fseqsupcl 13949 s7f1o 14939 vdwlem6 16964 0ram2 16999 0ramcl 17001 quslem 17513 gsumval3 19844 gsumzoppg 19881 mplsubrglem 21920 rncmp 23290 cmpsub 23294 tgcmp 23295 hauscmplem 23300 conncn 23320 2ndcctbss 23349 2ndcomap 23352 2ndcsep 23353 comppfsc 23426 ptcnplem 23515 txtube 23534 txcmplem1 23535 tx1stc 23544 tx2ndc 23545 qtopid 23599 qtopcmplem 23601 qtopkgen 23604 kqtopon 23621 kqopn 23628 kqcld 23629 qtopf1 23710 rnelfm 23847 fmfnfmlem2 23849 fmfnfm 23852 alexsubALT 23945 ptcmplem2 23947 tmdgsum2 23990 tsmsxplem1 24047 met1stc 24416 met2ndci 24417 uniiccdif 25486 dyadmbl 25508 mbfimaopnlem 25563 i1fadd 25603 i1fmul 25604 i1fmulc 25611 mbfi1fseqlem4 25626 limciun 25802 aannenlem3 26245 efabl 26466 logccv 26579 locfinreflem 33837 mvrsfpw 35500 msrfo 35540 mtyf 35546 bj-inftyexpitaufo 37197 itg2addnclem2 37673 istotbnd3 37772 sstotbnd 37776 prdsbnd 37794 cntotbnd 37797 heiborlem1 37812 heibor 37822 dihintcl 41345 focofob 47085 |
| Copyright terms: Public domain | W3C validator |