![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
3 | df-fo 6569 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ran crn 5690 Fn wfn 6558 –onto→wfo 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-fo 6569 |
This theorem is referenced by: funforn 6828 fimadmfo 6830 ffoss 7969 tposf2 8274 rneqdmfinf1o 9371 fidomdm 9372 indexfi 9398 intrnfi 9454 fifo 9470 ixpiunwdom 9628 infpwfien 10100 infmap2 10255 cfflb 10297 cfslb2n 10306 ttukeylem6 10552 dmct 10562 fnrndomg 10574 rankcf 10815 tskuni 10821 tskurn 10827 fseqsupcl 14015 s7f1o 15002 vdwlem6 17020 0ram2 17055 0ramcl 17057 quslem 17590 gsumval3 19940 gsumzoppg 19977 mplsubrglem 22042 rncmp 23420 cmpsub 23424 tgcmp 23425 hauscmplem 23430 conncn 23450 2ndcctbss 23479 2ndcomap 23482 2ndcsep 23483 comppfsc 23556 ptcnplem 23645 txtube 23664 txcmplem1 23665 tx1stc 23674 tx2ndc 23675 qtopid 23729 qtopcmplem 23731 qtopkgen 23734 kqtopon 23751 kqopn 23758 kqcld 23759 qtopf1 23840 rnelfm 23977 fmfnfmlem2 23979 fmfnfm 23982 alexsubALT 24075 ptcmplem2 24077 tmdgsum2 24120 tsmsxplem1 24177 met1stc 24550 met2ndci 24551 uniiccdif 25627 dyadmbl 25649 mbfimaopnlem 25704 i1fadd 25744 i1fmul 25745 itg1addlem4OLD 25749 i1fmulc 25753 mbfi1fseqlem4 25768 limciun 25944 aannenlem3 26387 efabl 26607 logccv 26720 locfinreflem 33801 mvrsfpw 35491 msrfo 35531 mtyf 35537 bj-inftyexpitaufo 37185 itg2addnclem2 37659 istotbnd3 37758 sstotbnd 37762 prdsbnd 37780 cntotbnd 37783 heiborlem1 37798 heibor 37808 dihintcl 41327 focofob 47030 |
Copyright terms: Public domain | W3C validator |