| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version | ||
| Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
| 2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
| 3 | df-fo 6495 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ran crn 5622 Fn wfn 6484 –onto→wfo 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-fo 6495 |
| This theorem is referenced by: funforn 6750 fimadmfo 6752 ffoss 7887 tposf2 8189 rneqdmfinf1o 9227 fidomdm 9228 indexfi 9254 intrnfi 9310 fifo 9326 ixpiunwdom 9486 infpwfien 9963 infmap2 10118 cfflb 10160 cfslb2n 10169 ttukeylem6 10415 dmct 10425 fnrndomg 10437 rankcf 10678 tskuni 10684 tskurn 10690 fseqsupcl 13894 s7f1o 14883 vdwlem6 16908 0ram2 16943 0ramcl 16945 quslem 17457 gsumval3 19829 gsumzoppg 19866 mplsubrglem 21951 rncmp 23321 cmpsub 23325 tgcmp 23326 hauscmplem 23331 conncn 23351 2ndcctbss 23380 2ndcomap 23383 2ndcsep 23384 comppfsc 23457 ptcnplem 23546 txtube 23565 txcmplem1 23566 tx1stc 23575 tx2ndc 23576 qtopid 23630 qtopcmplem 23632 qtopkgen 23635 kqtopon 23652 kqopn 23659 kqcld 23660 qtopf1 23741 rnelfm 23878 fmfnfmlem2 23880 fmfnfm 23883 alexsubALT 23976 ptcmplem2 23978 tmdgsum2 24021 tsmsxplem1 24078 met1stc 24446 met2ndci 24447 uniiccdif 25516 dyadmbl 25538 mbfimaopnlem 25593 i1fadd 25633 i1fmul 25634 i1fmulc 25641 mbfi1fseqlem4 25656 limciun 25832 aannenlem3 26275 efabl 26496 logccv 26609 locfinreflem 33864 mvrsfpw 35561 msrfo 35601 mtyf 35607 bj-inftyexpitaufo 37257 itg2addnclem2 37722 istotbnd3 37821 sstotbnd 37825 prdsbnd 37843 cntotbnd 37846 heiborlem1 37861 heibor 37871 dihintcl 41453 focofob 47194 |
| Copyright terms: Public domain | W3C validator |