![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ ran πΉ = ran πΉ | |
2 | 1 | biantru 531 | . 2 β’ (πΉ Fn π΄ β (πΉ Fn π΄ β§ ran πΉ = ran πΉ)) |
3 | df-fo 6550 | . 2 β’ (πΉ:π΄βontoβran πΉ β (πΉ Fn π΄ β§ ran πΉ = ran πΉ)) | |
4 | 2, 3 | bitr4i 278 | 1 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 397 = wceq 1542 ran crn 5678 Fn wfn 6539 βontoβwfo 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-fo 6550 |
This theorem is referenced by: funforn 6813 fimadmfo 6815 ffoss 7932 tposf2 8235 rneqdmfinf1o 9328 fidomdm 9329 pwfilemOLD 9346 indexfi 9360 intrnfi 9411 fifo 9427 ixpiunwdom 9585 infpwfien 10057 infmap2 10213 cfflb 10254 cfslb2n 10263 ttukeylem6 10509 dmct 10519 fnrndomg 10531 rankcf 10772 tskuni 10778 tskurn 10784 fseqsupcl 13942 vdwlem6 16919 0ram2 16954 0ramcl 16956 quslem 17489 gsumval3 19775 gsumzoppg 19812 mplsubrglem 21563 rncmp 22900 cmpsub 22904 tgcmp 22905 hauscmplem 22910 conncn 22930 2ndcctbss 22959 2ndcomap 22962 2ndcsep 22963 comppfsc 23036 ptcnplem 23125 txtube 23144 txcmplem1 23145 tx1stc 23154 tx2ndc 23155 qtopid 23209 qtopcmplem 23211 qtopkgen 23214 kqtopon 23231 kqopn 23238 kqcld 23239 qtopf1 23320 rnelfm 23457 fmfnfmlem2 23459 fmfnfm 23462 alexsubALT 23555 ptcmplem2 23557 tmdgsum2 23600 tsmsxplem1 23657 met1stc 24030 met2ndci 24031 uniiccdif 25095 dyadmbl 25117 mbfimaopnlem 25172 i1fadd 25212 i1fmul 25213 itg1addlem4OLD 25217 i1fmulc 25221 mbfi1fseqlem4 25236 limciun 25411 aannenlem3 25843 efabl 26059 logccv 26171 locfinreflem 32820 mvrsfpw 34497 msrfo 34537 mtyf 34543 bj-inftyexpitaufo 36083 itg2addnclem2 36540 istotbnd3 36639 sstotbnd 36643 prdsbnd 36661 cntotbnd 36664 heiborlem1 36679 heibor 36689 dihintcl 40215 focofob 45788 |
Copyright terms: Public domain | W3C validator |