Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
2 | 1 | biantru 531 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
3 | df-fo 6464 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ran crn 5601 Fn wfn 6453 –onto→wfo 6456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-fo 6464 |
This theorem is referenced by: funforn 6725 fimadmfo 6727 ffoss 7820 tposf2 8097 rneqdmfinf1o 9143 fidomdm 9144 pwfilemOLD 9161 indexfi 9175 intrnfi 9223 fifo 9239 ixpiunwdom 9397 infpwfien 9868 infmap2 10024 cfflb 10065 cfslb2n 10074 ttukeylem6 10320 dmct 10330 fnrndomg 10342 rankcf 10583 tskuni 10589 tskurn 10595 fseqsupcl 13747 vdwlem6 16736 0ram2 16771 0ramcl 16773 quslem 17303 gsumval3 19557 gsumzoppg 19594 mplsubrglem 21259 rncmp 22596 cmpsub 22600 tgcmp 22601 hauscmplem 22606 conncn 22626 2ndcctbss 22655 2ndcomap 22658 2ndcsep 22659 comppfsc 22732 ptcnplem 22821 txtube 22840 txcmplem1 22841 tx1stc 22850 tx2ndc 22851 qtopid 22905 qtopcmplem 22907 qtopkgen 22910 kqtopon 22927 kqopn 22934 kqcld 22935 qtopf1 23016 rnelfm 23153 fmfnfmlem2 23155 fmfnfm 23158 alexsubALT 23251 ptcmplem2 23253 tmdgsum2 23296 tsmsxplem1 23353 met1stc 23726 met2ndci 23727 uniiccdif 24791 dyadmbl 24813 mbfimaopnlem 24868 i1fadd 24908 i1fmul 24909 itg1addlem4OLD 24913 i1fmulc 24917 mbfi1fseqlem4 24932 limciun 25107 aannenlem3 25539 efabl 25755 logccv 25867 locfinreflem 31839 mvrsfpw 33517 msrfo 33557 mtyf 33563 bj-inftyexpitaufo 35421 itg2addnclem2 35877 istotbnd3 35977 sstotbnd 35981 prdsbnd 35999 cntotbnd 36002 heiborlem1 36017 heibor 36027 dihintcl 39558 focofob 44816 |
Copyright terms: Public domain | W3C validator |