Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
2 | 1 | biantru 530 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
3 | df-fo 6438 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ran crn 5591 Fn wfn 6427 –onto→wfo 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-cleq 2732 df-fo 6438 |
This theorem is referenced by: funforn 6693 fimadmfo 6695 ffoss 7782 tposf2 8057 rneqdmfinf1o 9073 fidomdm 9074 pwfilemOLD 9091 indexfi 9105 intrnfi 9153 fifo 9169 ixpiunwdom 9327 infpwfien 9819 infmap2 9975 cfflb 10016 cfslb2n 10025 ttukeylem6 10271 dmct 10281 fnrndomg 10293 rankcf 10534 tskuni 10540 tskurn 10546 fseqsupcl 13695 vdwlem6 16685 0ram2 16720 0ramcl 16722 quslem 17252 gsumval3 19506 gsumzoppg 19543 mplsubrglem 21208 rncmp 22545 cmpsub 22549 tgcmp 22550 hauscmplem 22555 conncn 22575 2ndcctbss 22604 2ndcomap 22607 2ndcsep 22608 comppfsc 22681 ptcnplem 22770 txtube 22789 txcmplem1 22790 tx1stc 22799 tx2ndc 22800 qtopid 22854 qtopcmplem 22856 qtopkgen 22859 kqtopon 22876 kqopn 22883 kqcld 22884 qtopf1 22965 rnelfm 23102 fmfnfmlem2 23104 fmfnfm 23107 alexsubALT 23200 ptcmplem2 23202 tmdgsum2 23245 tsmsxplem1 23302 met1stc 23675 met2ndci 23676 uniiccdif 24740 dyadmbl 24762 mbfimaopnlem 24817 i1fadd 24857 i1fmul 24858 itg1addlem4OLD 24862 i1fmulc 24866 mbfi1fseqlem4 24881 limciun 25056 aannenlem3 25488 efabl 25704 logccv 25816 locfinreflem 31786 mvrsfpw 33464 msrfo 33504 mtyf 33510 bj-inftyexpitaufo 35369 itg2addnclem2 35825 istotbnd3 35925 sstotbnd 35929 prdsbnd 35947 cntotbnd 35950 heiborlem1 35965 heibor 35975 dihintcl 39354 focofob 44540 |
Copyright terms: Public domain | W3C validator |