![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 β’ ran πΉ = ran πΉ | |
2 | 1 | biantru 529 | . 2 β’ (πΉ Fn π΄ β (πΉ Fn π΄ β§ ran πΉ = ran πΉ)) |
3 | df-fo 6548 | . 2 β’ (πΉ:π΄βontoβran πΉ β (πΉ Fn π΄ β§ ran πΉ = ran πΉ)) | |
4 | 2, 3 | bitr4i 278 | 1 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1534 ran crn 5673 Fn wfn 6537 βontoβwfo 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2719 df-fo 6548 |
This theorem is referenced by: funforn 6812 fimadmfo 6814 ffoss 7943 tposf2 8249 rneqdmfinf1o 9344 fidomdm 9345 pwfilemOLD 9362 indexfi 9376 intrnfi 9431 fifo 9447 ixpiunwdom 9605 infpwfien 10077 infmap2 10233 cfflb 10274 cfslb2n 10283 ttukeylem6 10529 dmct 10539 fnrndomg 10551 rankcf 10792 tskuni 10798 tskurn 10804 fseqsupcl 13966 vdwlem6 16946 0ram2 16981 0ramcl 16983 quslem 17516 gsumval3 19853 gsumzoppg 19890 mplsubrglem 21933 rncmp 23287 cmpsub 23291 tgcmp 23292 hauscmplem 23297 conncn 23317 2ndcctbss 23346 2ndcomap 23349 2ndcsep 23350 comppfsc 23423 ptcnplem 23512 txtube 23531 txcmplem1 23532 tx1stc 23541 tx2ndc 23542 qtopid 23596 qtopcmplem 23598 qtopkgen 23601 kqtopon 23618 kqopn 23625 kqcld 23626 qtopf1 23707 rnelfm 23844 fmfnfmlem2 23846 fmfnfm 23849 alexsubALT 23942 ptcmplem2 23944 tmdgsum2 23987 tsmsxplem1 24044 met1stc 24417 met2ndci 24418 uniiccdif 25494 dyadmbl 25516 mbfimaopnlem 25571 i1fadd 25611 i1fmul 25612 itg1addlem4OLD 25616 i1fmulc 25620 mbfi1fseqlem4 25635 limciun 25810 aannenlem3 26252 efabl 26471 logccv 26584 locfinreflem 33377 mvrsfpw 35052 msrfo 35092 mtyf 35098 bj-inftyexpitaufo 36617 itg2addnclem2 37080 istotbnd3 37179 sstotbnd 37183 prdsbnd 37201 cntotbnd 37204 heiborlem1 37219 heibor 37229 dihintcl 40754 focofob 46383 |
Copyright terms: Public domain | W3C validator |