Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
3 | df-fo 6436 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ran crn 5589 Fn wfn 6425 –onto→wfo 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-fo 6436 |
This theorem is referenced by: funforn 6691 fimadmfo 6693 ffoss 7775 tposf2 8050 rneqdmfinf1o 9056 fidomdm 9057 pwfilemOLD 9074 indexfi 9088 intrnfi 9136 fifo 9152 ixpiunwdom 9310 infpwfien 9802 infmap2 9958 cfflb 9999 cfslb2n 10008 ttukeylem6 10254 dmct 10264 fnrndomg 10276 rankcf 10517 tskuni 10523 tskurn 10529 fseqsupcl 13678 vdwlem6 16668 0ram2 16703 0ramcl 16705 quslem 17235 gsumval3 19489 gsumzoppg 19526 mplsubrglem 21191 rncmp 22528 cmpsub 22532 tgcmp 22533 hauscmplem 22538 conncn 22558 2ndcctbss 22587 2ndcomap 22590 2ndcsep 22591 comppfsc 22664 ptcnplem 22753 txtube 22772 txcmplem1 22773 tx1stc 22782 tx2ndc 22783 qtopid 22837 qtopcmplem 22839 qtopkgen 22842 kqtopon 22859 kqopn 22866 kqcld 22867 qtopf1 22948 rnelfm 23085 fmfnfmlem2 23087 fmfnfm 23090 alexsubALT 23183 ptcmplem2 23185 tmdgsum2 23228 tsmsxplem1 23285 met1stc 23658 met2ndci 23659 uniiccdif 24723 dyadmbl 24745 mbfimaopnlem 24800 i1fadd 24840 i1fmul 24841 itg1addlem4OLD 24845 i1fmulc 24849 mbfi1fseqlem4 24864 limciun 25039 aannenlem3 25471 efabl 25687 logccv 25799 locfinreflem 31769 mvrsfpw 33447 msrfo 33487 mtyf 33493 bj-inftyexpitaufo 35352 itg2addnclem2 35808 istotbnd3 35908 sstotbnd 35912 prdsbnd 35930 cntotbnd 35933 heiborlem1 35948 heibor 35958 dihintcl 39337 focofob 44523 |
Copyright terms: Public domain | W3C validator |