MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruima Structured version   Visualization version   GIF version

Theorem gruima 10814
Description: A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruima ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))

Proof of Theorem gruima
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → Fun 𝐹)
2 funrel 6552 . . . 4 (Fun 𝐹 → Rel 𝐹)
3 df-ima 5667 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
4 resres 5979 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
5 resdm 6013 . . . . . . . 8 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
65reseq1d 5965 . . . . . . 7 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
74, 6eqtr3id 2784 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
87rneqd 5918 . . . . 5 (Rel 𝐹 → ran (𝐹 ↾ (dom 𝐹𝐴)) = ran (𝐹𝐴))
93, 8eqtr4id 2789 . . . 4 (Rel 𝐹 → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
101, 2, 93syl 18 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
11 simpl1 1192 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝑈 ∈ Univ)
12 simpr 484 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝐴𝑈)
13 inss2 4213 . . . . . 6 (dom 𝐹𝐴) ⊆ 𝐴
1413a1i 11 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ⊆ 𝐴)
15 gruss 10808 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (dom 𝐹𝐴) ⊆ 𝐴) → (dom 𝐹𝐴) ∈ 𝑈)
1611, 12, 14, 15syl3anc 1373 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ∈ 𝑈)
17 funforn 6796 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹onto→ran 𝐹)
18 fof 6789 . . . . . . . 8 (𝐹:dom 𝐹onto→ran 𝐹𝐹:dom 𝐹⟶ran 𝐹)
1917, 18sylbi 217 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
20 inss1 4212 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
21 fssres 6743 . . . . . . 7 ((𝐹:dom 𝐹⟶ran 𝐹 ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
2219, 20, 21sylancl 586 . . . . . 6 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
23 ffn 6705 . . . . . 6 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
241, 22, 233syl 18 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
25 simpl3 1194 . . . . . 6 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ⊆ 𝑈)
2610, 25eqsstrrd 3994 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈)
27 df-f 6534 . . . . 5 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈 ↔ ((𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈))
2824, 26, 27sylanbrc 583 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈)
29 grurn 10813 . . . 4 ((𝑈 ∈ Univ ∧ (dom 𝐹𝐴) ∈ 𝑈 ∧ (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3011, 16, 28, 29syl3anc 1373 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3110, 30eqeltrd 2834 . 2 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ∈ 𝑈)
3231ex 412 1 ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cin 3925  wss 3926  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Rel wrel 5659  Fun wfun 6524   Fn wfn 6525  wf 6526  ontowfo 6528  Univcgru 10802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fo 6536  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-gru 10803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator