MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruima Structured version   Visualization version   GIF version

Theorem gruima 10755
Description: A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruima ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))

Proof of Theorem gruima
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → Fun 𝐹)
2 funrel 6533 . . . 4 (Fun 𝐹 → Rel 𝐹)
3 df-ima 5651 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
4 resres 5963 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
5 resdm 5997 . . . . . . . 8 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
65reseq1d 5949 . . . . . . 7 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
74, 6eqtr3id 2778 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
87rneqd 5902 . . . . 5 (Rel 𝐹 → ran (𝐹 ↾ (dom 𝐹𝐴)) = ran (𝐹𝐴))
93, 8eqtr4id 2783 . . . 4 (Rel 𝐹 → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
101, 2, 93syl 18 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
11 simpl1 1192 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝑈 ∈ Univ)
12 simpr 484 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝐴𝑈)
13 inss2 4201 . . . . . 6 (dom 𝐹𝐴) ⊆ 𝐴
1413a1i 11 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ⊆ 𝐴)
15 gruss 10749 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (dom 𝐹𝐴) ⊆ 𝐴) → (dom 𝐹𝐴) ∈ 𝑈)
1611, 12, 14, 15syl3anc 1373 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ∈ 𝑈)
17 funforn 6779 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹onto→ran 𝐹)
18 fof 6772 . . . . . . . 8 (𝐹:dom 𝐹onto→ran 𝐹𝐹:dom 𝐹⟶ran 𝐹)
1917, 18sylbi 217 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
20 inss1 4200 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
21 fssres 6726 . . . . . . 7 ((𝐹:dom 𝐹⟶ran 𝐹 ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
2219, 20, 21sylancl 586 . . . . . 6 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
23 ffn 6688 . . . . . 6 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
241, 22, 233syl 18 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
25 simpl3 1194 . . . . . 6 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ⊆ 𝑈)
2610, 25eqsstrrd 3982 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈)
27 df-f 6515 . . . . 5 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈 ↔ ((𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈))
2824, 26, 27sylanbrc 583 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈)
29 grurn 10754 . . . 4 ((𝑈 ∈ Univ ∧ (dom 𝐹𝐴) ∈ 𝑈 ∧ (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3011, 16, 28, 29syl3anc 1373 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3110, 30eqeltrd 2828 . 2 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ∈ 𝑈)
3231ex 412 1 ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913  wss 3914  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Rel wrel 5643  Fun wfun 6505   Fn wfn 6506  wf 6507  ontowfo 6509  Univcgru 10743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-gru 10744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator