MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruima Structured version   Visualization version   GIF version

Theorem gruima 10070
Description: A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruima ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))

Proof of Theorem gruima
StepHypRef Expression
1 simpl2 1185 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → Fun 𝐹)
2 funrel 6242 . . . 4 (Fun 𝐹 → Rel 𝐹)
3 resres 5747 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
4 resdm 5778 . . . . . . . 8 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
54reseq1d 5733 . . . . . . 7 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
63, 5syl5eqr 2845 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
76rneqd 5690 . . . . 5 (Rel 𝐹 → ran (𝐹 ↾ (dom 𝐹𝐴)) = ran (𝐹𝐴))
8 df-ima 5456 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
97, 8syl6reqr 2850 . . . 4 (Rel 𝐹 → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
101, 2, 93syl 18 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
11 simpl1 1184 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝑈 ∈ Univ)
12 simpr 485 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝐴𝑈)
13 inss2 4126 . . . . . 6 (dom 𝐹𝐴) ⊆ 𝐴
1413a1i 11 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ⊆ 𝐴)
15 gruss 10064 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (dom 𝐹𝐴) ⊆ 𝐴) → (dom 𝐹𝐴) ∈ 𝑈)
1611, 12, 14, 15syl3anc 1364 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ∈ 𝑈)
17 funforn 6465 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹onto→ran 𝐹)
18 fof 6458 . . . . . . . 8 (𝐹:dom 𝐹onto→ran 𝐹𝐹:dom 𝐹⟶ran 𝐹)
1917, 18sylbi 218 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
20 inss1 4125 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
21 fssres 6412 . . . . . . 7 ((𝐹:dom 𝐹⟶ran 𝐹 ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
2219, 20, 21sylancl 586 . . . . . 6 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
23 ffn 6382 . . . . . 6 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
241, 22, 233syl 18 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
25 simpl3 1186 . . . . . 6 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ⊆ 𝑈)
2610, 25eqsstrrd 3927 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈)
27 df-f 6229 . . . . 5 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈 ↔ ((𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈))
2824, 26, 27sylanbrc 583 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈)
29 grurn 10069 . . . 4 ((𝑈 ∈ Univ ∧ (dom 𝐹𝐴) ∈ 𝑈 ∧ (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3011, 16, 28, 29syl3anc 1364 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3110, 30eqeltrd 2883 . 2 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ∈ 𝑈)
3231ex 413 1 ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  cin 3858  wss 3859  dom cdm 5443  ran crn 5444  cres 5445  cima 5446  Rel wrel 5448  Fun wfun 6219   Fn wfn 6220  wf 6221  ontowfo 6223  Univcgru 10058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-tr 5064  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-fo 6231  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-map 8258  df-gru 10059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator