MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruima Structured version   Visualization version   GIF version

Theorem gruima 10762
Description: A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruima ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))

Proof of Theorem gruima
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → Fun 𝐹)
2 funrel 6536 . . . 4 (Fun 𝐹 → Rel 𝐹)
3 df-ima 5654 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
4 resres 5966 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
5 resdm 6000 . . . . . . . 8 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
65reseq1d 5952 . . . . . . 7 (Rel 𝐹 → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
74, 6eqtr3id 2779 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
87rneqd 5905 . . . . 5 (Rel 𝐹 → ran (𝐹 ↾ (dom 𝐹𝐴)) = ran (𝐹𝐴))
93, 8eqtr4id 2784 . . . 4 (Rel 𝐹 → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
101, 2, 93syl 18 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) = ran (𝐹 ↾ (dom 𝐹𝐴)))
11 simpl1 1192 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝑈 ∈ Univ)
12 simpr 484 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → 𝐴𝑈)
13 inss2 4204 . . . . . 6 (dom 𝐹𝐴) ⊆ 𝐴
1413a1i 11 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ⊆ 𝐴)
15 gruss 10756 . . . . 5 ((𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ (dom 𝐹𝐴) ⊆ 𝐴) → (dom 𝐹𝐴) ∈ 𝑈)
1611, 12, 14, 15syl3anc 1373 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (dom 𝐹𝐴) ∈ 𝑈)
17 funforn 6782 . . . . . . . 8 (Fun 𝐹𝐹:dom 𝐹onto→ran 𝐹)
18 fof 6775 . . . . . . . 8 (𝐹:dom 𝐹onto→ran 𝐹𝐹:dom 𝐹⟶ran 𝐹)
1917, 18sylbi 217 . . . . . . 7 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
20 inss1 4203 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
21 fssres 6729 . . . . . . 7 ((𝐹:dom 𝐹⟶ran 𝐹 ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
2219, 20, 21sylancl 586 . . . . . 6 (Fun 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹)
23 ffn 6691 . . . . . 6 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ran 𝐹 → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
241, 22, 233syl 18 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴))
25 simpl3 1194 . . . . . 6 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ⊆ 𝑈)
2610, 25eqsstrrd 3985 . . . . 5 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈)
27 df-f 6518 . . . . 5 ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈 ↔ ((𝐹 ↾ (dom 𝐹𝐴)) Fn (dom 𝐹𝐴) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ 𝑈))
2824, 26, 27sylanbrc 583 . . . 4 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈)
29 grurn 10761 . . . 4 ((𝑈 ∈ Univ ∧ (dom 𝐹𝐴) ∈ 𝑈 ∧ (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3011, 16, 28, 29syl3anc 1373 . . 3 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → ran (𝐹 ↾ (dom 𝐹𝐴)) ∈ 𝑈)
3110, 30eqeltrd 2829 . 2 (((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) ∧ 𝐴𝑈) → (𝐹𝐴) ∈ 𝑈)
3231ex 412 1 ((𝑈 ∈ Univ ∧ Fun 𝐹 ∧ (𝐹𝐴) ⊆ 𝑈) → (𝐴𝑈 → (𝐹𝐴) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  wss 3917  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  Univcgru 10750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-gru 10751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator