MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppglsm Structured version   Visualization version   GIF version

Theorem oppglsm 19660
Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
oppglsm.o 𝑂 = (oppg𝐺)
oppglsm.p = (LSSum‘𝐺)
Assertion
Ref Expression
oppglsm (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇)

Proof of Theorem oppglsm
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppglsm.o . . . . . . 7 𝑂 = (oppg𝐺)
21fvexi 6920 . . . . . 6 𝑂 ∈ V
3 eqid 2737 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
41, 3oppgbas 19370 . . . . . . 7 (Base‘𝐺) = (Base‘𝑂)
5 eqid 2737 . . . . . . 7 (+g𝑂) = (+g𝑂)
6 eqid 2737 . . . . . . 7 (LSSum‘𝑂) = (LSSum‘𝑂)
74, 5, 6lsmfval 19656 . . . . . 6 (𝑂 ∈ V → (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))))
82, 7ax-mp 5 . . . . 5 (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
9 eqid 2737 . . . . . . . 8 (+g𝐺) = (+g𝐺)
10 oppglsm.p . . . . . . . 8 = (LSSum‘𝐺)
113, 9, 10lsmfval 19656 . . . . . . 7 (𝐺 ∈ V → = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
1211tposeqd 8254 . . . . . 6 (𝐺 ∈ V → tpos = tpos (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
13 eqid 2737 . . . . . . . . . . . . 13 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
1413reldmmpo 7567 . . . . . . . . . . . 12 Rel dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
1513mpofun 7557 . . . . . . . . . . . . 13 Fun (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
16 funforn 6827 . . . . . . . . . . . . 13 (Fun (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) ↔ (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)))
1715, 16mpbi 230 . . . . . . . . . . . 12 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
18 tposfo2 8274 . . . . . . . . . . . 12 (Rel dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → ((𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))))
1914, 17, 18mp2 9 . . . . . . . . . . 11 tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
20 forn 6823 . . . . . . . . . . 11 (tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)):dom (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))–onto→ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) → ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)))
2119, 20ax-mp 5 . . . . . . . . . 10 ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))
229, 1, 5oppgplus 19367 . . . . . . . . . . . . . . 15 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
2322eqcomi 2746 . . . . . . . . . . . . . 14 (𝑦(+g𝐺)𝑥) = (𝑥(+g𝑂)𝑦)
2423a1i 11 . . . . . . . . . . . . 13 ((𝑦𝑢𝑥𝑡) → (𝑦(+g𝐺)𝑥) = (𝑥(+g𝑂)𝑦))
2524mpoeq3ia 7511 . . . . . . . . . . . 12 (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑦𝑢, 𝑥𝑡 ↦ (𝑥(+g𝑂)𝑦))
2625tposmpo 8288 . . . . . . . . . . 11 tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2726rneqi 5948 . . . . . . . . . 10 ran tpos (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2821, 27eqtr3i 2767 . . . . . . . . 9 ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))
2928a1i 11 . . . . . . . 8 ((𝑢 ∈ 𝒫 (Base‘𝐺) ∧ 𝑡 ∈ 𝒫 (Base‘𝐺)) → ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
3029mpoeq3ia 7511 . . . . . . 7 (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))) = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
3130tposmpo 8288 . . . . . 6 tpos (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑦𝑢, 𝑥𝑡 ↦ (𝑦(+g𝐺)𝑥))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)))
3212, 31eqtrdi 2793 . . . . 5 (𝐺 ∈ V → tpos = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))))
338, 32eqtr4id 2796 . . . 4 (𝐺 ∈ V → (LSSum‘𝑂) = tpos )
3433oveqd 7448 . . 3 (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇tpos 𝑈))
35 ovtpos 8266 . . 3 (𝑇tpos 𝑈) = (𝑈 𝑇)
3634, 35eqtrdi 2793 . 2 (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇))
37 eqid 2737 . . . . . . 7 (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)
38 0ex 5307 . . . . . . 7 ∅ ∈ V
39 eqidd 2738 . . . . . . 7 ((𝑡 = 𝑇𝑢 = 𝑈) → ∅ = ∅)
4037, 38, 39elovmpo 7678 . . . . . 6 (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ↔ (𝑇 ∈ 𝒫 (Base‘𝐺) ∧ 𝑈 ∈ 𝒫 (Base‘𝐺) ∧ 𝑥 ∈ ∅))
4140simp3bi 1148 . . . . 5 (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) → 𝑥 ∈ ∅)
4241ssriv 3987 . . . 4 (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅
43 ss0 4402 . . . 4 ((𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅ → (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅)
4442, 43ax-mp 5 . . 3 (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅
45 elpwi 4607 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 (Base‘𝐺) → 𝑡 ⊆ (Base‘𝐺))
46453ad2ant2 1135 . . . . . . . . . . . 12 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 ⊆ (Base‘𝐺))
47 fvprc 6898 . . . . . . . . . . . . 13 𝐺 ∈ V → (Base‘𝐺) = ∅)
48473ad2ant1 1134 . . . . . . . . . . . 12 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (Base‘𝐺) = ∅)
4946, 48sseqtrd 4020 . . . . . . . . . . 11 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 ⊆ ∅)
50 ss0 4402 . . . . . . . . . . 11 (𝑡 ⊆ ∅ → 𝑡 = ∅)
5149, 50syl 17 . . . . . . . . . 10 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → 𝑡 = ∅)
5251orcd 874 . . . . . . . . 9 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (𝑡 = ∅ ∨ 𝑢 = ∅))
53 0mpo0 7516 . . . . . . . . 9 ((𝑡 = ∅ ∨ 𝑢 = ∅) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅)
5452, 53syl 17 . . . . . . . 8 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅)
5554rneqd 5949 . . . . . . 7 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ran ∅)
56 rn0 5936 . . . . . . 7 ran ∅ = ∅
5755, 56eqtrdi 2793 . . . . . 6 ((¬ 𝐺 ∈ V ∧ 𝑡 ∈ 𝒫 (Base‘𝐺) ∧ 𝑢 ∈ 𝒫 (Base‘𝐺)) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦)) = ∅)
5857mpoeq3dva 7510 . . . . 5 𝐺 ∈ V → (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑂)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅))
598, 58eqtrid 2789 . . . 4 𝐺 ∈ V → (LSSum‘𝑂) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅))
6059oveqd 7448 . . 3 𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈))
61 fvprc 6898 . . . . . 6 𝐺 ∈ V → (LSSum‘𝐺) = ∅)
6210, 61eqtrid 2789 . . . . 5 𝐺 ∈ V → = ∅)
6362oveqd 7448 . . . 4 𝐺 ∈ V → (𝑈 𝑇) = (𝑈𝑇))
64 0ov 7468 . . . 4 (𝑈𝑇) = ∅
6563, 64eqtrdi 2793 . . 3 𝐺 ∈ V → (𝑈 𝑇) = ∅)
6644, 60, 653eqtr4a 2803 . 2 𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇))
6736, 66pm2.61i 182 1 (𝑇(LSSum‘𝑂)𝑈) = (𝑈 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  c0 4333  𝒫 cpw 4600  ccnv 5684  dom cdm 5685  ran crn 5686  Rel wrel 5690  Fun wfun 6555  ontowfo 6559  cfv 6561  (class class class)co 7431  cmpo 7433  tpos ctpos 8250  Basecbs 17247  +gcplusg 17297  oppgcoppg 19363  LSSumclsm 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-oppg 19364  df-lsm 19654
This theorem is referenced by:  lsmmod2  19694  lsmdisj2r  19703  lsmsnorb2  33420
  Copyright terms: Public domain W3C validator