| Step | Hyp | Ref
| Expression |
| 1 | | oppglsm.o |
. . . . . . 7
⊢ 𝑂 =
(oppg‘𝐺) |
| 2 | 1 | fvexi 6920 |
. . . . . 6
⊢ 𝑂 ∈ V |
| 3 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 4 | 1, 3 | oppgbas 19370 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝑂) |
| 5 | | eqid 2737 |
. . . . . . 7
⊢
(+g‘𝑂) = (+g‘𝑂) |
| 6 | | eqid 2737 |
. . . . . . 7
⊢
(LSSum‘𝑂) =
(LSSum‘𝑂) |
| 7 | 4, 5, 6 | lsmfval 19656 |
. . . . . 6
⊢ (𝑂 ∈ V →
(LSSum‘𝑂) = (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)))) |
| 8 | 2, 7 | ax-mp 5 |
. . . . 5
⊢
(LSSum‘𝑂) =
(𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 9 | | eqid 2737 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 10 | | oppglsm.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
| 11 | 3, 9, 10 | lsmfval 19656 |
. . . . . . 7
⊢ (𝐺 ∈ V → ⊕ =
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
| 12 | 11 | tposeqd 8254 |
. . . . . 6
⊢ (𝐺 ∈ V → tpos ⊕ = tpos
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
| 13 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 14 | 13 | reldmmpo 7567 |
. . . . . . . . . . . 12
⊢ Rel dom
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 15 | 13 | mpofun 7557 |
. . . . . . . . . . . . 13
⊢ Fun
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 16 | | funforn 6827 |
. . . . . . . . . . . . 13
⊢ (Fun
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) ↔ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) |
| 17 | 15, 16 | mpbi 230 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 18 | | tposfo2 8274 |
. . . . . . . . . . . 12
⊢ (Rel dom
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → ((𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → tpos (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
| 19 | 14, 17, 18 | mp2 9 |
. . . . . . . . . . 11
⊢ tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 20 | | forn 6823 |
. . . . . . . . . . 11
⊢ (tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → ran tpos (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
| 22 | 9, 1, 5 | oppgplus 19367 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
| 23 | 22 | eqcomi 2746 |
. . . . . . . . . . . . . 14
⊢ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝑂)𝑦) |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑥 ∈ 𝑡) → (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝑂)𝑦)) |
| 25 | 24 | mpoeq3ia 7511 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 26 | 25 | tposmpo 8288 |
. . . . . . . . . . 11
⊢ tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 27 | 26 | rneqi 5948 |
. . . . . . . . . 10
⊢ ran tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 28 | 21, 27 | eqtr3i 2767 |
. . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
| 29 | 28 | a1i 11 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝒫
(Base‘𝐺) ∧ 𝑡 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 30 | 29 | mpoeq3ia 7511 |
. . . . . . 7
⊢ (𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 31 | 30 | tposmpo 8288 |
. . . . . 6
⊢ tpos
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
| 32 | 12, 31 | eqtrdi 2793 |
. . . . 5
⊢ (𝐺 ∈ V → tpos ⊕ =
(𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)))) |
| 33 | 8, 32 | eqtr4id 2796 |
. . . 4
⊢ (𝐺 ∈ V →
(LSSum‘𝑂) = tpos
⊕
) |
| 34 | 33 | oveqd 7448 |
. . 3
⊢ (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇tpos ⊕ 𝑈)) |
| 35 | | ovtpos 8266 |
. . 3
⊢ (𝑇tpos ⊕ 𝑈) = (𝑈 ⊕ 𝑇) |
| 36 | 34, 35 | eqtrdi 2793 |
. 2
⊢ (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇)) |
| 37 | | eqid 2737 |
. . . . . . 7
⊢ (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅) = (𝑡 ∈
𝒫 (Base‘𝐺),
𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅) |
| 38 | | 0ex 5307 |
. . . . . . 7
⊢ ∅
∈ V |
| 39 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ∅ = ∅) |
| 40 | 37, 38, 39 | elovmpo 7678 |
. . . . . 6
⊢ (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ↔ (𝑇 ∈ 𝒫 (Base‘𝐺) ∧ 𝑈 ∈ 𝒫 (Base‘𝐺) ∧ 𝑥 ∈ ∅)) |
| 41 | 40 | simp3bi 1148 |
. . . . 5
⊢ (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) → 𝑥 ∈ ∅) |
| 42 | 41 | ssriv 3987 |
. . . 4
⊢ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆
∅ |
| 43 | | ss0 4402 |
. . . 4
⊢ ((𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅ → (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅) |
| 44 | 42, 43 | ax-mp 5 |
. . 3
⊢ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅ |
| 45 | | elpwi 4607 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝒫
(Base‘𝐺) → 𝑡 ⊆ (Base‘𝐺)) |
| 46 | 45 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 ⊆ (Base‘𝐺)) |
| 47 | | fvprc 6898 |
. . . . . . . . . . . . 13
⊢ (¬
𝐺 ∈ V →
(Base‘𝐺) =
∅) |
| 48 | 47 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(Base‘𝐺) =
∅) |
| 49 | 46, 48 | sseqtrd 4020 |
. . . . . . . . . . 11
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 ⊆
∅) |
| 50 | | ss0 4402 |
. . . . . . . . . . 11
⊢ (𝑡 ⊆ ∅ → 𝑡 = ∅) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 =
∅) |
| 52 | 51 | orcd 874 |
. . . . . . . . 9
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(𝑡 = ∅ ∨ 𝑢 = ∅)) |
| 53 | | 0mpo0 7516 |
. . . . . . . . 9
⊢ ((𝑡 = ∅ ∨ 𝑢 = ∅) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
| 54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
| 55 | 54 | rneqd 5949 |
. . . . . . 7
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ran ∅) |
| 56 | | rn0 5936 |
. . . . . . 7
⊢ ran
∅ = ∅ |
| 57 | 55, 56 | eqtrdi 2793 |
. . . . . 6
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
| 58 | 57 | mpoeq3dva 7510 |
. . . . 5
⊢ (¬
𝐺 ∈ V → (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦
∅)) |
| 59 | 8, 58 | eqtrid 2789 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(LSSum‘𝑂) = (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅)) |
| 60 | 59 | oveqd 7448 |
. . 3
⊢ (¬
𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈)) |
| 61 | | fvprc 6898 |
. . . . . 6
⊢ (¬
𝐺 ∈ V →
(LSSum‘𝐺) =
∅) |
| 62 | 10, 61 | eqtrid 2789 |
. . . . 5
⊢ (¬
𝐺 ∈ V → ⊕ =
∅) |
| 63 | 62 | oveqd 7448 |
. . . 4
⊢ (¬
𝐺 ∈ V → (𝑈 ⊕ 𝑇) = (𝑈∅𝑇)) |
| 64 | | 0ov 7468 |
. . . 4
⊢ (𝑈∅𝑇) = ∅ |
| 65 | 63, 64 | eqtrdi 2793 |
. . 3
⊢ (¬
𝐺 ∈ V → (𝑈 ⊕ 𝑇) = ∅) |
| 66 | 44, 60, 65 | 3eqtr4a 2803 |
. 2
⊢ (¬
𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇)) |
| 67 | 36, 66 | pm2.61i 182 |
1
⊢ (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇) |