Step | Hyp | Ref
| Expression |
1 | | oppglsm.o |
. . . . . . 7
⊢ 𝑂 =
(oppg‘𝐺) |
2 | 1 | fvexi 6782 |
. . . . . 6
⊢ 𝑂 ∈ V |
3 | | eqid 2739 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
4 | 1, 3 | oppgbas 18937 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝑂) |
5 | | eqid 2739 |
. . . . . . 7
⊢
(+g‘𝑂) = (+g‘𝑂) |
6 | | eqid 2739 |
. . . . . . 7
⊢
(LSSum‘𝑂) =
(LSSum‘𝑂) |
7 | 4, 5, 6 | lsmfval 19224 |
. . . . . 6
⊢ (𝑂 ∈ V →
(LSSum‘𝑂) = (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)))) |
8 | 2, 7 | ax-mp 5 |
. . . . 5
⊢
(LSSum‘𝑂) =
(𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
9 | | eqid 2739 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
10 | | oppglsm.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
11 | 3, 9, 10 | lsmfval 19224 |
. . . . . . 7
⊢ (𝐺 ∈ V → ⊕ =
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
12 | 11 | tposeqd 8029 |
. . . . . 6
⊢ (𝐺 ∈ V → tpos ⊕ = tpos
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
13 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
14 | 13 | reldmmpo 7399 |
. . . . . . . . . . . 12
⊢ Rel dom
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
15 | 13 | mpofun 7389 |
. . . . . . . . . . . . 13
⊢ Fun
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
16 | | funforn 6691 |
. . . . . . . . . . . . 13
⊢ (Fun
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) ↔ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) |
17 | 15, 16 | mpbi 229 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
18 | | tposfo2 8049 |
. . . . . . . . . . . 12
⊢ (Rel dom
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → ((𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → tpos (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)))) |
19 | 14, 17, 18 | mp2 9 |
. . . . . . . . . . 11
⊢ tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
20 | | forn 6687 |
. . . . . . . . . . 11
⊢ (tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)):◡dom (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))–onto→ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) → ran tpos (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) |
22 | 9, 1, 5 | oppgplus 18934 |
. . . . . . . . . . . . . . 15
⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
23 | 22 | eqcomi 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝑂)𝑦) |
24 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑢 ∧ 𝑥 ∈ 𝑡) → (𝑦(+g‘𝐺)𝑥) = (𝑥(+g‘𝑂)𝑦)) |
25 | 24 | mpoeq3ia 7344 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑥(+g‘𝑂)𝑦)) |
26 | 25 | tposmpo 8063 |
. . . . . . . . . . 11
⊢ tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
27 | 26 | rneqi 5843 |
. . . . . . . . . 10
⊢ ran tpos
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
28 | 21, 27 | eqtr3i 2769 |
. . . . . . . . 9
⊢ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) |
29 | 28 | a1i 11 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝒫
(Base‘𝐺) ∧ 𝑡 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
30 | 29 | mpoeq3ia 7344 |
. . . . . . 7
⊢ (𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) = (𝑢 ∈ 𝒫 (Base‘𝐺), 𝑡 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
31 | 30 | tposmpo 8063 |
. . . . . 6
⊢ tpos
(𝑢 ∈ 𝒫
(Base‘𝐺), 𝑡 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑦 ∈ 𝑢, 𝑥 ∈ 𝑡 ↦ (𝑦(+g‘𝐺)𝑥))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) |
32 | 12, 31 | eqtrdi 2795 |
. . . . 5
⊢ (𝐺 ∈ V → tpos ⊕ =
(𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)))) |
33 | 8, 32 | eqtr4id 2798 |
. . . 4
⊢ (𝐺 ∈ V →
(LSSum‘𝑂) = tpos
⊕
) |
34 | 33 | oveqd 7285 |
. . 3
⊢ (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇tpos ⊕ 𝑈)) |
35 | | ovtpos 8041 |
. . 3
⊢ (𝑇tpos ⊕ 𝑈) = (𝑈 ⊕ 𝑇) |
36 | 34, 35 | eqtrdi 2795 |
. 2
⊢ (𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇)) |
37 | | eqid 2739 |
. . . . . . 7
⊢ (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅) = (𝑡 ∈
𝒫 (Base‘𝐺),
𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅) |
38 | | 0ex 5234 |
. . . . . . 7
⊢ ∅
∈ V |
39 | | eqidd 2740 |
. . . . . . 7
⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ∅ = ∅) |
40 | 37, 38, 39 | elovmpo 7505 |
. . . . . 6
⊢ (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ↔ (𝑇 ∈ 𝒫 (Base‘𝐺) ∧ 𝑈 ∈ 𝒫 (Base‘𝐺) ∧ 𝑥 ∈ ∅)) |
41 | 40 | simp3bi 1145 |
. . . . 5
⊢ (𝑥 ∈ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) → 𝑥 ∈ ∅) |
42 | 41 | ssriv 3929 |
. . . 4
⊢ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆
∅ |
43 | | ss0 4337 |
. . . 4
⊢ ((𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) ⊆ ∅ → (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅) |
44 | 42, 43 | ax-mp 5 |
. . 3
⊢ (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈) = ∅ |
45 | | elpwi 4547 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝒫
(Base‘𝐺) → 𝑡 ⊆ (Base‘𝐺)) |
46 | 45 | 3ad2ant2 1132 |
. . . . . . . . . . . 12
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 ⊆ (Base‘𝐺)) |
47 | | fvprc 6760 |
. . . . . . . . . . . . 13
⊢ (¬
𝐺 ∈ V →
(Base‘𝐺) =
∅) |
48 | 47 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(Base‘𝐺) =
∅) |
49 | 46, 48 | sseqtrd 3965 |
. . . . . . . . . . 11
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 ⊆
∅) |
50 | | ss0 4337 |
. . . . . . . . . . 11
⊢ (𝑡 ⊆ ∅ → 𝑡 = ∅) |
51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
𝑡 =
∅) |
52 | 51 | orcd 869 |
. . . . . . . . 9
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(𝑡 = ∅ ∨ 𝑢 = ∅)) |
53 | | 0mpo0 7349 |
. . . . . . . . 9
⊢ ((𝑡 = ∅ ∨ 𝑢 = ∅) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) →
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
55 | 54 | rneqd 5844 |
. . . . . . 7
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ran ∅) |
56 | | rn0 5832 |
. . . . . . 7
⊢ ran
∅ = ∅ |
57 | 55, 56 | eqtrdi 2795 |
. . . . . 6
⊢ ((¬
𝐺 ∈ V ∧ 𝑡 ∈ 𝒫
(Base‘𝐺) ∧ 𝑢 ∈ 𝒫
(Base‘𝐺)) → ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦)) = ∅) |
58 | 57 | mpoeq3dva 7343 |
. . . . 5
⊢ (¬
𝐺 ∈ V → (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦ ran
(𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑂)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦
∅)) |
59 | 8, 58 | eqtrid 2791 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(LSSum‘𝑂) = (𝑡 ∈ 𝒫
(Base‘𝐺), 𝑢 ∈ 𝒫
(Base‘𝐺) ↦
∅)) |
60 | 59 | oveqd 7285 |
. . 3
⊢ (¬
𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑇(𝑡 ∈ 𝒫 (Base‘𝐺), 𝑢 ∈ 𝒫 (Base‘𝐺) ↦ ∅)𝑈)) |
61 | | fvprc 6760 |
. . . . . 6
⊢ (¬
𝐺 ∈ V →
(LSSum‘𝐺) =
∅) |
62 | 10, 61 | eqtrid 2791 |
. . . . 5
⊢ (¬
𝐺 ∈ V → ⊕ =
∅) |
63 | 62 | oveqd 7285 |
. . . 4
⊢ (¬
𝐺 ∈ V → (𝑈 ⊕ 𝑇) = (𝑈∅𝑇)) |
64 | | 0ov 7305 |
. . . 4
⊢ (𝑈∅𝑇) = ∅ |
65 | 63, 64 | eqtrdi 2795 |
. . 3
⊢ (¬
𝐺 ∈ V → (𝑈 ⊕ 𝑇) = ∅) |
66 | 44, 60, 65 | 3eqtr4a 2805 |
. 2
⊢ (¬
𝐺 ∈ V → (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇)) |
67 | 36, 66 | pm2.61i 182 |
1
⊢ (𝑇(LSSum‘𝑂)𝑈) = (𝑈 ⊕ 𝑇) |