MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptop2 Structured version   Visualization version   GIF version

Theorem qtoptop2 23728
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtoptop2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)

Proof of Theorem qtoptop2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 𝐽 = 𝐽
21qtopres 23727 . . 3 (𝐹𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
323ad2ant2 1134 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
4 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → 𝐽 ∈ Top)
5 funres 6620 . . . . . . . . . . . . . . 15 (Fun 𝐹 → Fun (𝐹 𝐽))
653ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → Fun (𝐹 𝐽))
7 funforn 6841 . . . . . . . . . . . . . 14 (Fun (𝐹 𝐽) ↔ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
86, 7sylib 218 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
9 dmres 6041 . . . . . . . . . . . . . . 15 dom (𝐹 𝐽) = ( 𝐽 ∩ dom 𝐹)
10 inss1 4258 . . . . . . . . . . . . . . 15 ( 𝐽 ∩ dom 𝐹) ⊆ 𝐽
119, 10eqsstri 4043 . . . . . . . . . . . . . 14 dom (𝐹 𝐽) ⊆ 𝐽
1211a1i 11 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → dom (𝐹 𝐽) ⊆ 𝐽)
131elqtop 23726 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
144, 8, 12, 13syl3anc 1371 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
1514simprbda 498 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ⊆ ran (𝐹 𝐽))
16 velpw 4627 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ran (𝐹 𝐽) ↔ 𝑦 ⊆ ran (𝐹 𝐽))
1715, 16sylibr 234 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽))
1817ex 412 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽)))
1918ssrdv 4014 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽))
20 sstr2 4015 . . . . . . . 8 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
2119, 20syl5com 31 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
22 sspwuni 5123 . . . . . . 7 (𝑥 ⊆ 𝒫 ran (𝐹 𝐽) ↔ 𝑥 ⊆ ran (𝐹 𝐽))
2321, 22imbitrdi 251 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ ran (𝐹 𝐽)))
24 imauni 7283 . . . . . . . 8 ((𝐹 𝐽) “ 𝑥) = 𝑦𝑥 ((𝐹 𝐽) “ 𝑦)
2514simplbda 499 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
2625ralrimiva 3152 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
27 ssralv 4077 . . . . . . . . . 10 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → (∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽 → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽))
2826, 27mpan9 506 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
29 iunopn 22925 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
304, 28, 29syl2an2r 684 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
3124, 30eqeltrid 2848 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
3231ex 412 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
3323, 32jcad 512 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
341elqtop 23726 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
354, 8, 12, 34syl3anc 1371 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
3633, 35sylibrd 259 . . . 4 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
3736alrimiv 1926 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
38 inss1 4258 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
391elqtop 23726 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
404, 8, 12, 39syl3anc 1371 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
4140biimpa 476 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4241adantrr 716 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4342simpld 494 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝑥 ⊆ ran (𝐹 𝐽))
4438, 43sstrid 4020 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ⊆ ran (𝐹 𝐽))
456adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → Fun (𝐹 𝐽))
46 inpreima 7097 . . . . . . 7 (Fun (𝐹 𝐽) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
4745, 46syl 17 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
484adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝐽 ∈ Top)
4942simprd 495 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
5025adantrl 715 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
51 inopn 22926 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽 ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5248, 49, 50, 51syl3anc 1371 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5347, 52eqeltrd 2844 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)
541elqtop 23726 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
554, 8, 12, 54syl3anc 1371 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5655adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5744, 53, 56mpbir2and 712 . . . 4 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
5857ralrimivva 3208 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
59 ovex 7481 . . . 4 (𝐽 qTop (𝐹 𝐽)) ∈ V
60 istopg 22922 . . . 4 ((𝐽 qTop (𝐹 𝐽)) ∈ V → ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))))
6159, 60ax-mp 5 . . 3 ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽))))
6237, 58, 61sylanbrc 582 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ∈ Top)
633, 62eqeltrd 2844 1 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931   ciun 5015  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  ontowfo 6571  (class class class)co 7448   qTop cqtop 17563  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-qtop 17567  df-top 22921
This theorem is referenced by:  qtoptop  23729
  Copyright terms: Public domain W3C validator