| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 2 | 1 | qtopres 23706 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
| 3 | 2 | 3ad2ant2 1135 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
| 4 | | simp1 1137 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → 𝐽 ∈ Top) |
| 5 | | funres 6608 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐹 → Fun (𝐹 ↾ ∪ 𝐽)) |
| 6 | 5 | 3ad2ant3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → Fun (𝐹 ↾ ∪ 𝐽)) |
| 7 | | funforn 6827 |
. . . . . . . . . . . . . 14
⊢ (Fun
(𝐹 ↾ ∪ 𝐽)
↔ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽)) |
| 8 | 6, 7 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽)) |
| 9 | | dmres 6030 |
. . . . . . . . . . . . . . 15
⊢ dom
(𝐹 ↾ ∪ 𝐽) =
(∪ 𝐽 ∩ dom 𝐹) |
| 10 | | inss1 4237 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
∩ dom 𝐹) ⊆ ∪ 𝐽 |
| 11 | 9, 10 | eqsstri 4030 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐹 ↾ ∪ 𝐽)
⊆ ∪ 𝐽 |
| 12 | 11 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽) |
| 13 | 1 | elqtop 23705 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ (𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽))) |
| 14 | 4, 8, 12, 13 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽))) |
| 15 | 14 | simprbda 498 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → 𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
| 16 | | velpw 4605 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 ran (𝐹 ↾ ∪ 𝐽)
↔ 𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
| 17 | 15, 16 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → 𝑦 ∈ 𝒫 ran (𝐹 ↾ ∪ 𝐽)) |
| 18 | 17 | ex 412 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → 𝑦 ∈ 𝒫 ran (𝐹 ↾ ∪ 𝐽))) |
| 19 | 18 | ssrdv 3989 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽)) |
| 20 | | sstr2 3990 |
. . . . . . . 8
⊢ (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽)
→ 𝑥 ⊆ 𝒫
ran (𝐹 ↾ ∪ 𝐽))) |
| 21 | 19, 20 | syl5com 31 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → 𝑥 ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽))) |
| 22 | | sspwuni 5100 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽)
↔ ∪ 𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
| 23 | 21, 22 | imbitrdi 251 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽))) |
| 24 | | imauni 7266 |
. . . . . . . 8
⊢ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥) =
∪ 𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) |
| 25 | 14 | simplbda 499 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
| 26 | 25 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
| 27 | | ssralv 4052 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → (∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽)) |
| 28 | 26, 27 | mpan9 506 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → ∀𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
| 29 | | iunopn 22904 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) → ∪
𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
| 30 | 4, 28, 29 | syl2an2r 685 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → ∪ 𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
| 31 | 24, 30 | eqeltrid 2845 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽) |
| 32 | 31 | ex 412 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽)) |
| 33 | 23, 32 | jcad 512 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → (∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽))) |
| 34 | 1 | elqtop 23705 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ (∪ 𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽))) |
| 35 | 4, 8, 12, 34 | syl3anc 1373 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (∪ 𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽))) |
| 36 | 33, 35 | sylibrd 259 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) |
| 37 | 36 | alrimiv 1927 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) |
| 38 | | inss1 4237 |
. . . . . 6
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 |
| 39 | 1 | elqtop 23705 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽))) |
| 40 | 4, 8, 12, 39 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽))) |
| 41 | 40 | biimpa 476 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽)) |
| 42 | 41 | adantrr 717 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽)) |
| 43 | 42 | simpld 494 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → 𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
| 44 | 38, 43 | sstrid 3995 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
| 45 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → Fun (𝐹 ↾ ∪ 𝐽)) |
| 46 | | inpreima 7084 |
. . . . . . 7
⊢ (Fun
(𝐹 ↾ ∪ 𝐽)
→ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) = ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦))) |
| 47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) = ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦))) |
| 48 | 4 | adantr 480 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → 𝐽 ∈ Top) |
| 49 | 42 | simprd 495 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽) |
| 50 | 25 | adantrl 716 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
| 51 | | inopn 22905 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽 ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) → ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦)) ∈ 𝐽) |
| 52 | 48, 49, 50, 51 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦)) ∈ 𝐽) |
| 53 | 47, 52 | eqeltrd 2841 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽) |
| 54 | 1 | elqtop 23705 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ ((𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ ((𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽))) |
| 55 | 4, 8, 12, 54 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ((𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ ((𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽))) |
| 56 | 55 | adantr 480 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → ((𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ ((𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽))) |
| 57 | 44, 53, 56 | mpbir2and 713 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
| 58 | 57 | ralrimivva 3202 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ∀𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
| 59 | | ovex 7464 |
. . . 4
⊢ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ V |
| 60 | | istopg 22901 |
. . . 4
⊢ ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ V → ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ Top ↔
(∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))
∧ ∀𝑥 ∈
(𝐽 qTop (𝐹 ↾ ∪ 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))))) |
| 61 | 59, 60 | ax-mp 5 |
. . 3
⊢ ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ Top ↔
(∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))
∧ ∀𝑥 ∈
(𝐽 qTop (𝐹 ↾ ∪ 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) |
| 62 | 37, 58, 61 | sylanbrc 583 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ Top) |
| 63 | 3, 62 | eqeltrd 2841 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) |