MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptop2 Structured version   Visualization version   GIF version

Theorem qtoptop2 23637
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtoptop2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)

Proof of Theorem qtoptop2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 𝐽 = 𝐽
21qtopres 23636 . . 3 (𝐹𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
323ad2ant2 1134 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
4 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → 𝐽 ∈ Top)
5 funres 6578 . . . . . . . . . . . . . . 15 (Fun 𝐹 → Fun (𝐹 𝐽))
653ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → Fun (𝐹 𝐽))
7 funforn 6797 . . . . . . . . . . . . . 14 (Fun (𝐹 𝐽) ↔ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
86, 7sylib 218 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
9 dmres 5999 . . . . . . . . . . . . . . 15 dom (𝐹 𝐽) = ( 𝐽 ∩ dom 𝐹)
10 inss1 4212 . . . . . . . . . . . . . . 15 ( 𝐽 ∩ dom 𝐹) ⊆ 𝐽
119, 10eqsstri 4005 . . . . . . . . . . . . . 14 dom (𝐹 𝐽) ⊆ 𝐽
1211a1i 11 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → dom (𝐹 𝐽) ⊆ 𝐽)
131elqtop 23635 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
144, 8, 12, 13syl3anc 1373 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
1514simprbda 498 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ⊆ ran (𝐹 𝐽))
16 velpw 4580 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ran (𝐹 𝐽) ↔ 𝑦 ⊆ ran (𝐹 𝐽))
1715, 16sylibr 234 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽))
1817ex 412 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽)))
1918ssrdv 3964 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽))
20 sstr2 3965 . . . . . . . 8 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
2119, 20syl5com 31 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
22 sspwuni 5076 . . . . . . 7 (𝑥 ⊆ 𝒫 ran (𝐹 𝐽) ↔ 𝑥 ⊆ ran (𝐹 𝐽))
2321, 22imbitrdi 251 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ ran (𝐹 𝐽)))
24 imauni 7238 . . . . . . . 8 ((𝐹 𝐽) “ 𝑥) = 𝑦𝑥 ((𝐹 𝐽) “ 𝑦)
2514simplbda 499 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
2625ralrimiva 3132 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
27 ssralv 4027 . . . . . . . . . 10 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → (∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽 → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽))
2826, 27mpan9 506 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
29 iunopn 22836 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
304, 28, 29syl2an2r 685 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
3124, 30eqeltrid 2838 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
3231ex 412 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
3323, 32jcad 512 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
341elqtop 23635 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
354, 8, 12, 34syl3anc 1373 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
3633, 35sylibrd 259 . . . 4 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
3736alrimiv 1927 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
38 inss1 4212 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
391elqtop 23635 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
404, 8, 12, 39syl3anc 1373 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
4140biimpa 476 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4241adantrr 717 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4342simpld 494 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝑥 ⊆ ran (𝐹 𝐽))
4438, 43sstrid 3970 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ⊆ ran (𝐹 𝐽))
456adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → Fun (𝐹 𝐽))
46 inpreima 7054 . . . . . . 7 (Fun (𝐹 𝐽) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
4745, 46syl 17 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
484adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝐽 ∈ Top)
4942simprd 495 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
5025adantrl 716 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
51 inopn 22837 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽 ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5248, 49, 50, 51syl3anc 1373 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5347, 52eqeltrd 2834 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)
541elqtop 23635 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
554, 8, 12, 54syl3anc 1373 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5655adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5744, 53, 56mpbir2and 713 . . . 4 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
5857ralrimivva 3187 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
59 ovex 7438 . . . 4 (𝐽 qTop (𝐹 𝐽)) ∈ V
60 istopg 22833 . . . 4 ((𝐽 qTop (𝐹 𝐽)) ∈ V → ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))))
6159, 60ax-mp 5 . . 3 ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽))))
6237, 58, 61sylanbrc 583 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ∈ Top)
633, 62eqeltrd 2834 1 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883   ciun 4967  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Fun wfun 6525  ontowfo 6529  (class class class)co 7405   qTop cqtop 17517  Topctop 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-qtop 17521  df-top 22832
This theorem is referenced by:  qtoptop  23638
  Copyright terms: Public domain W3C validator