MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptop2 Structured version   Visualization version   GIF version

Theorem qtoptop2 23132
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtoptop2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)

Proof of Theorem qtoptop2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 𝐽 = 𝐽
21qtopres 23131 . . 3 (𝐹𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
323ad2ant2 1134 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
4 simp1 1136 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → 𝐽 ∈ Top)
5 funres 6579 . . . . . . . . . . . . . . 15 (Fun 𝐹 → Fun (𝐹 𝐽))
653ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → Fun (𝐹 𝐽))
7 funforn 6799 . . . . . . . . . . . . . 14 (Fun (𝐹 𝐽) ↔ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
86, 7sylib 217 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
9 dmres 5995 . . . . . . . . . . . . . . 15 dom (𝐹 𝐽) = ( 𝐽 ∩ dom 𝐹)
10 inss1 4224 . . . . . . . . . . . . . . 15 ( 𝐽 ∩ dom 𝐹) ⊆ 𝐽
119, 10eqsstri 4012 . . . . . . . . . . . . . 14 dom (𝐹 𝐽) ⊆ 𝐽
1211a1i 11 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → dom (𝐹 𝐽) ⊆ 𝐽)
131elqtop 23130 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
144, 8, 12, 13syl3anc 1371 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
1514simprbda 499 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ⊆ ran (𝐹 𝐽))
16 velpw 4601 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ran (𝐹 𝐽) ↔ 𝑦 ⊆ ran (𝐹 𝐽))
1715, 16sylibr 233 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽))
1817ex 413 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽)))
1918ssrdv 3984 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽))
20 sstr2 3985 . . . . . . . 8 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
2119, 20syl5com 31 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
22 sspwuni 5096 . . . . . . 7 (𝑥 ⊆ 𝒫 ran (𝐹 𝐽) ↔ 𝑥 ⊆ ran (𝐹 𝐽))
2321, 22syl6ib 250 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ ran (𝐹 𝐽)))
24 imauni 7229 . . . . . . . 8 ((𝐹 𝐽) “ 𝑥) = 𝑦𝑥 ((𝐹 𝐽) “ 𝑦)
2514simplbda 500 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
2625ralrimiva 3145 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
27 ssralv 4046 . . . . . . . . . 10 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → (∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽 → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽))
2826, 27mpan9 507 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
29 iunopn 22329 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
304, 28, 29syl2an2r 683 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
3124, 30eqeltrid 2836 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
3231ex 413 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
3323, 32jcad 513 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
341elqtop 23130 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
354, 8, 12, 34syl3anc 1371 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
3633, 35sylibrd 258 . . . 4 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
3736alrimiv 1930 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
38 inss1 4224 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
391elqtop 23130 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
404, 8, 12, 39syl3anc 1371 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
4140biimpa 477 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4241adantrr 715 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4342simpld 495 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝑥 ⊆ ran (𝐹 𝐽))
4438, 43sstrid 3989 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ⊆ ran (𝐹 𝐽))
456adantr 481 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → Fun (𝐹 𝐽))
46 inpreima 7050 . . . . . . 7 (Fun (𝐹 𝐽) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
4745, 46syl 17 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
484adantr 481 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝐽 ∈ Top)
4942simprd 496 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
5025adantrl 714 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
51 inopn 22330 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽 ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5248, 49, 50, 51syl3anc 1371 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5347, 52eqeltrd 2832 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)
541elqtop 23130 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
554, 8, 12, 54syl3anc 1371 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5655adantr 481 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5744, 53, 56mpbir2and 711 . . . 4 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
5857ralrimivva 3199 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
59 ovex 7426 . . . 4 (𝐽 qTop (𝐹 𝐽)) ∈ V
60 istopg 22326 . . . 4 ((𝐽 qTop (𝐹 𝐽)) ∈ V → ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))))
6159, 60ax-mp 5 . . 3 ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽))))
6237, 58, 61sylanbrc 583 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ∈ Top)
633, 62eqeltrd 2832 1 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wral 3060  Vcvv 3473  cin 3943  wss 3944  𝒫 cpw 4596   cuni 4901   ciun 4990  ccnv 5668  dom cdm 5669  ran crn 5670  cres 5671  cima 5672  Fun wfun 6526  ontowfo 6530  (class class class)co 7393   qTop cqtop 17431  Topctop 22324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-qtop 17435  df-top 22325
This theorem is referenced by:  qtoptop  23133
  Copyright terms: Public domain W3C validator