Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
2 | 1 | qtopres 22411 |
. . 3
⊢ (𝐹 ∈ 𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
3 | 2 | 3ad2ant2 1131 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
4 | | simp1 1133 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → 𝐽 ∈ Top) |
5 | | funres 6382 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐹 → Fun (𝐹 ↾ ∪ 𝐽)) |
6 | 5 | 3ad2ant3 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → Fun (𝐹 ↾ ∪ 𝐽)) |
7 | | funforn 6588 |
. . . . . . . . . . . . . 14
⊢ (Fun
(𝐹 ↾ ∪ 𝐽)
↔ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽)) |
8 | 6, 7 | sylib 221 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽)) |
9 | | dmres 5850 |
. . . . . . . . . . . . . . 15
⊢ dom
(𝐹 ↾ ∪ 𝐽) =
(∪ 𝐽 ∩ dom 𝐹) |
10 | | inss1 4135 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝐽
∩ dom 𝐹) ⊆ ∪ 𝐽 |
11 | 9, 10 | eqsstri 3928 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐹 ↾ ∪ 𝐽)
⊆ ∪ 𝐽 |
12 | 11 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽) |
13 | 1 | elqtop 22410 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ (𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽))) |
14 | 4, 8, 12, 13 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽))) |
15 | 14 | simprbda 502 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → 𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
16 | | velpw 4502 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝒫 ran (𝐹 ↾ ∪ 𝐽)
↔ 𝑦 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
17 | 15, 16 | sylibr 237 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → 𝑦 ∈ 𝒫 ran (𝐹 ↾ ∪ 𝐽)) |
18 | 17 | ex 416 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → 𝑦 ∈ 𝒫 ran (𝐹 ↾ ∪ 𝐽))) |
19 | 18 | ssrdv 3900 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽)) |
20 | | sstr2 3901 |
. . . . . . . 8
⊢ (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽)
→ 𝑥 ⊆ 𝒫
ran (𝐹 ↾ ∪ 𝐽))) |
21 | 19, 20 | syl5com 31 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → 𝑥 ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽))) |
22 | | sspwuni 4991 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝒫 ran (𝐹 ↾ ∪ 𝐽)
↔ ∪ 𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
23 | 21, 22 | syl6ib 254 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽))) |
24 | | imauni 7003 |
. . . . . . . 8
⊢ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥) =
∪ 𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) |
25 | 14 | simplbda 503 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
26 | 25 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
27 | | ssralv 3960 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → (∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽 → ∀𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽)) |
28 | 26, 27 | mpan9 510 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → ∀𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
29 | | iunopn 21611 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) → ∪
𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
30 | 4, 28, 29 | syl2an2r 684 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → ∪ 𝑦 ∈ 𝑥 (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
31 | 24, 30 | eqeltrid 2856 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽) |
32 | 31 | ex 416 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽)) |
33 | 23, 32 | jcad 516 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → (∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽))) |
34 | 1 | elqtop 22410 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ (∪ 𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽))) |
35 | 4, 8, 12, 34 | syl3anc 1368 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (∪ 𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (∪ 𝑥
⊆ ran (𝐹 ↾
∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ ∪ 𝑥)
∈ 𝐽))) |
36 | 33, 35 | sylibrd 262 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) |
37 | 36 | alrimiv 1928 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) |
38 | | inss1 4135 |
. . . . . 6
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 |
39 | 1 | elqtop 22410 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽))) |
40 | 4, 8, 12, 39 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽))) |
41 | 40 | biimpa 480 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ 𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) → (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽)) |
42 | 41 | adantrr 716 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽)) |
43 | 42 | simpld 498 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → 𝑥 ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
44 | 38, 43 | sstrid 3905 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽)) |
45 | 6 | adantr 484 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → Fun (𝐹 ↾ ∪ 𝐽)) |
46 | | inpreima 6830 |
. . . . . . 7
⊢ (Fun
(𝐹 ↾ ∪ 𝐽)
→ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) = ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦))) |
47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) = ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦))) |
48 | 4 | adantr 484 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → 𝐽 ∈ Top) |
49 | 42 | simprd 499 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽) |
50 | 25 | adantrl 715 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) |
51 | | inopn 21612 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∈ 𝐽 ∧ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦) ∈ 𝐽) → ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦)) ∈ 𝐽) |
52 | 48, 49, 50, 51 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → ((◡(𝐹 ↾ ∪ 𝐽) “ 𝑥) ∩ (◡(𝐹 ↾ ∪ 𝐽) “ 𝑦)) ∈ 𝐽) |
53 | 47, 52 | eqeltrd 2852 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽) |
54 | 1 | elqtop 22410 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (𝐹 ↾ ∪ 𝐽):dom (𝐹 ↾ ∪ 𝐽)–onto→ran (𝐹 ↾ ∪ 𝐽) ∧ dom (𝐹 ↾ ∪ 𝐽) ⊆ ∪ 𝐽)
→ ((𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ ((𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽))) |
55 | 4, 8, 12, 54 | syl3anc 1368 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ((𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ ((𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽))) |
56 | 55 | adantr 484 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → ((𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ↔ ((𝑥 ∩ 𝑦) ⊆ ran (𝐹 ↾ ∪ 𝐽) ∧ (◡(𝐹 ↾ ∪ 𝐽) “ (𝑥 ∩ 𝑦)) ∈ 𝐽))) |
57 | 44, 53, 56 | mpbir2and 712 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) → (𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
58 | 57 | ralrimivva 3120 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → ∀𝑥 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))) |
59 | | ovex 7189 |
. . . 4
⊢ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ V |
60 | | istopg 21608 |
. . . 4
⊢ ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ V → ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ Top ↔
(∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))
∧ ∀𝑥 ∈
(𝐽 qTop (𝐹 ↾ ∪ 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))))) |
61 | 59, 60 | ax-mp 5 |
. . 3
⊢ ((𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ Top ↔
(∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) → ∪ 𝑥
∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))
∧ ∀𝑥 ∈
(𝐽 qTop (𝐹 ↾ ∪ 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽))(𝑥 ∩ 𝑦) ∈ (𝐽 qTop (𝐹 ↾ ∪ 𝐽)))) |
62 | 37, 58, 61 | sylanbrc 586 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 ↾ ∪ 𝐽)) ∈ Top) |
63 | 3, 62 | eqeltrd 2852 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top) |