Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptop2 Structured version   Visualization version   GIF version

Theorem qtoptop2 22412
 Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtoptop2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)

Proof of Theorem qtoptop2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . 4 𝐽 = 𝐽
21qtopres 22411 . . 3 (𝐹𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
323ad2ant2 1131 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹 𝐽)))
4 simp1 1133 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → 𝐽 ∈ Top)
5 funres 6382 . . . . . . . . . . . . . . 15 (Fun 𝐹 → Fun (𝐹 𝐽))
653ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → Fun (𝐹 𝐽))
7 funforn 6588 . . . . . . . . . . . . . 14 (Fun (𝐹 𝐽) ↔ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
86, 7sylib 221 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽))
9 dmres 5850 . . . . . . . . . . . . . . 15 dom (𝐹 𝐽) = ( 𝐽 ∩ dom 𝐹)
10 inss1 4135 . . . . . . . . . . . . . . 15 ( 𝐽 ∩ dom 𝐹) ⊆ 𝐽
119, 10eqsstri 3928 . . . . . . . . . . . . . 14 dom (𝐹 𝐽) ⊆ 𝐽
1211a1i 11 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → dom (𝐹 𝐽) ⊆ 𝐽)
131elqtop 22410 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
144, 8, 12, 13syl3anc 1368 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑦 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)))
1514simprbda 502 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ⊆ ran (𝐹 𝐽))
16 velpw 4502 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ran (𝐹 𝐽) ↔ 𝑦 ⊆ ran (𝐹 𝐽))
1715, 16sylibr 237 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽))
1817ex 416 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑦 ∈ (𝐽 qTop (𝐹 𝐽)) → 𝑦 ∈ 𝒫 ran (𝐹 𝐽)))
1918ssrdv 3900 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽))
20 sstr2 3901 . . . . . . . 8 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐽 qTop (𝐹 𝐽)) ⊆ 𝒫 ran (𝐹 𝐽) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
2119, 20syl5com 31 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ 𝒫 ran (𝐹 𝐽)))
22 sspwuni 4991 . . . . . . 7 (𝑥 ⊆ 𝒫 ran (𝐹 𝐽) ↔ 𝑥 ⊆ ran (𝐹 𝐽))
2321, 22syl6ib 254 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ⊆ ran (𝐹 𝐽)))
24 imauni 7003 . . . . . . . 8 ((𝐹 𝐽) “ 𝑥) = 𝑦𝑥 ((𝐹 𝐽) “ 𝑦)
2514simplbda 503 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
2625ralrimiva 3113 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
27 ssralv 3960 . . . . . . . . . 10 (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → (∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))((𝐹 𝐽) “ 𝑦) ∈ 𝐽 → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽))
2826, 27mpan9 510 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
29 iunopn 21611 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ∀𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
304, 28, 29syl2an2r 684 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → 𝑦𝑥 ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
3124, 30eqeltrid 2856 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ⊆ (𝐽 qTop (𝐹 𝐽))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
3231ex 416 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
3323, 32jcad 516 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
341elqtop 22410 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
354, 8, 12, 34syl3anc 1368 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ( 𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ( 𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
3633, 35sylibrd 262 . . . 4 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
3736alrimiv 1928 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))))
38 inss1 4135 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
391elqtop 22410 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
404, 8, 12, 39syl3anc 1368 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ↔ (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)))
4140biimpa 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4241adantrr 716 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥 ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽))
4342simpld 498 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝑥 ⊆ ran (𝐹 𝐽))
4438, 43sstrid 3905 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ⊆ ran (𝐹 𝐽))
456adantr 484 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → Fun (𝐹 𝐽))
46 inpreima 6830 . . . . . . 7 (Fun (𝐹 𝐽) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
4745, 46syl 17 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) = (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)))
484adantr 484 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → 𝐽 ∈ Top)
4942simprd 499 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑥) ∈ 𝐽)
5025adantrl 715 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ 𝑦) ∈ 𝐽)
51 inopn 21612 . . . . . . 7 ((𝐽 ∈ Top ∧ ((𝐹 𝐽) “ 𝑥) ∈ 𝐽 ∧ ((𝐹 𝐽) “ 𝑦) ∈ 𝐽) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5248, 49, 50, 51syl3anc 1368 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (((𝐹 𝐽) “ 𝑥) ∩ ((𝐹 𝐽) “ 𝑦)) ∈ 𝐽)
5347, 52eqeltrd 2852 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)
541elqtop 22410 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐹 𝐽):dom (𝐹 𝐽)–onto→ran (𝐹 𝐽) ∧ dom (𝐹 𝐽) ⊆ 𝐽) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
554, 8, 12, 54syl3anc 1368 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5655adantr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → ((𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)) ↔ ((𝑥𝑦) ⊆ ran (𝐹 𝐽) ∧ ((𝐹 𝐽) “ (𝑥𝑦)) ∈ 𝐽)))
5744, 53, 56mpbir2and 712 . . . 4 (((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) ∧ (𝑥 ∈ (𝐽 qTop (𝐹 𝐽)) ∧ 𝑦 ∈ (𝐽 qTop (𝐹 𝐽)))) → (𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
5857ralrimivva 3120 . . 3 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))
59 ovex 7189 . . . 4 (𝐽 qTop (𝐹 𝐽)) ∈ V
60 istopg 21608 . . . 4 ((𝐽 qTop (𝐹 𝐽)) ∈ V → ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽)))))
6159, 60ax-mp 5 . . 3 ((𝐽 qTop (𝐹 𝐽)) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐽 qTop (𝐹 𝐽)) → 𝑥 ∈ (𝐽 qTop (𝐹 𝐽))) ∧ ∀𝑥 ∈ (𝐽 qTop (𝐹 𝐽))∀𝑦 ∈ (𝐽 qTop (𝐹 𝐽))(𝑥𝑦) ∈ (𝐽 qTop (𝐹 𝐽))))
6237, 58, 61sylanbrc 586 . 2 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop (𝐹 𝐽)) ∈ Top)
633, 62eqeltrd 2852 1 ((𝐽 ∈ Top ∧ 𝐹𝑉 ∧ Fun 𝐹) → (𝐽 qTop 𝐹) ∈ Top)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409   ∩ cin 3859   ⊆ wss 3860  𝒫 cpw 4497  ∪ cuni 4801  ∪ ciun 4886  ◡ccnv 5527  dom cdm 5528  ran crn 5529   ↾ cres 5530   “ cima 5531  Fun wfun 6334  –onto→wfo 6338  (class class class)co 7156   qTop cqtop 16847  Topctop 21606 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-qtop 16851  df-top 21607 This theorem is referenced by:  qtoptop  22413
 Copyright terms: Public domain W3C validator