Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveleq Structured version   Visualization version   GIF version

Theorem fveleq 36495
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Assertion
Ref Expression
fveleq (𝐴 = 𝐵 → ((𝜑 → (𝐹𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐵) ∈ 𝑃)))

Proof of Theorem fveleq
StepHypRef Expression
1 fveq2 6822 . . 3 (𝐴 = 𝐵 → (𝐹𝐴) = (𝐹𝐵))
21eleq1d 2816 . 2 (𝐴 = 𝐵 → ((𝐹𝐴) ∈ 𝑃 ↔ (𝐹𝐵) ∈ 𝑃))
32imbi2d 340 1 (𝐴 = 𝐵 → ((𝜑 → (𝐹𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐵) ∈ 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489
This theorem is referenced by:  findfvcl  36496
  Copyright terms: Public domain W3C validator