Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveleq Structured version   Visualization version   GIF version

Theorem fveleq 33033
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Assertion
Ref Expression
fveleq (𝐴 = 𝐵 → ((𝜑 → (𝐹𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐵) ∈ 𝑃)))

Proof of Theorem fveleq
StepHypRef Expression
1 fveq2 6446 . . 3 (𝐴 = 𝐵 → (𝐹𝐴) = (𝐹𝐵))
21eleq1d 2843 . 2 (𝐴 = 𝐵 → ((𝐹𝐴) ∈ 𝑃 ↔ (𝐹𝐵) ∈ 𝑃))
32imbi2d 332 1 (𝐴 = 𝐵 → ((𝜑 → (𝐹𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐵) ∈ 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2106  cfv 6135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rex 3095  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143
This theorem is referenced by:  findfvcl  33034
  Copyright terms: Public domain W3C validator