Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > findfvcl | Structured version Visualization version GIF version |
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
Ref | Expression |
---|---|
findfvcl.1 | ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) |
findfvcl.2 | ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
Ref | Expression |
---|---|
findfvcl | ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveleq 34567 | . 2 ⊢ (𝑥 = ∅ → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃))) | |
2 | fveleq 34567 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝑦) ∈ 𝑃))) | |
3 | fveleq 34567 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
4 | fveleq 34567 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝐴) ∈ 𝑃))) | |
5 | findfvcl.1 | . 2 ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) | |
6 | findfvcl.2 | . . 3 ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
7 | 6 | a2d 29 | . 2 ⊢ (𝑦 ∈ ω → ((𝜑 → (𝐹‘𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
8 | 1, 2, 3, 4, 5, 7 | finds 7719 | 1 ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∅c0 4253 suc csuc 6253 ‘cfv 6418 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fv 6426 df-om 7688 |
This theorem is referenced by: findreccl 34569 |
Copyright terms: Public domain | W3C validator |