| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > findfvcl | Structured version Visualization version GIF version | ||
| Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| findfvcl.1 | ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) |
| findfvcl.2 | ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
| Ref | Expression |
|---|---|
| findfvcl | ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveleq 36453 | . 2 ⊢ (𝑥 = ∅ → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃))) | |
| 2 | fveleq 36453 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝑦) ∈ 𝑃))) | |
| 3 | fveleq 36453 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
| 4 | fveleq 36453 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝐴) ∈ 𝑃))) | |
| 5 | findfvcl.1 | . 2 ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) | |
| 6 | findfvcl.2 | . . 3 ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
| 7 | 6 | a2d 29 | . 2 ⊢ (𝑦 ∈ ω → ((𝜑 → (𝐹‘𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
| 8 | 1, 2, 3, 4, 5, 7 | finds 7919 | 1 ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∅c0 4332 suc csuc 6385 ‘cfv 6560 ωcom 7888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fv 6568 df-om 7889 |
| This theorem is referenced by: findreccl 36455 |
| Copyright terms: Public domain | W3C validator |