Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findfvcl Structured version   Visualization version   GIF version

Theorem findfvcl 36485
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Hypotheses
Ref Expression
findfvcl.1 (𝜑 → (𝐹‘∅) ∈ 𝑃)
findfvcl.2 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
Assertion
Ref Expression
findfvcl (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Distinct variable groups:   𝑦,𝐹   𝑦,𝑃   𝜑,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem findfvcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveleq 36484 . 2 (𝑥 = ∅ → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃)))
2 fveleq 36484 . 2 (𝑥 = 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝑦) ∈ 𝑃)))
3 fveleq 36484 . 2 (𝑥 = suc 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
4 fveleq 36484 . 2 (𝑥 = 𝐴 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐴) ∈ 𝑃)))
5 findfvcl.1 . 2 (𝜑 → (𝐹‘∅) ∈ 𝑃)
6 findfvcl.2 . . 3 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
76a2d 29 . 2 (𝑦 ∈ ω → ((𝜑 → (𝐹𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
81, 2, 3, 4, 5, 7finds 7826 1 (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  c0 4283  suc csuc 6308  cfv 6481  ωcom 7796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fv 6489  df-om 7797
This theorem is referenced by:  findreccl  36486
  Copyright terms: Public domain W3C validator