| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > findfvcl | Structured version Visualization version GIF version | ||
| Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| findfvcl.1 | ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) |
| findfvcl.2 | ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
| Ref | Expression |
|---|---|
| findfvcl | ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveleq 36516 | . 2 ⊢ (𝑥 = ∅ → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃))) | |
| 2 | fveleq 36516 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝑦) ∈ 𝑃))) | |
| 3 | fveleq 36516 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
| 4 | fveleq 36516 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝐴) ∈ 𝑃))) | |
| 5 | findfvcl.1 | . 2 ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) | |
| 6 | findfvcl.2 | . . 3 ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
| 7 | 6 | a2d 29 | . 2 ⊢ (𝑦 ∈ ω → ((𝜑 → (𝐹‘𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
| 8 | 1, 2, 3, 4, 5, 7 | finds 7832 | 1 ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∅c0 4282 suc csuc 6313 ‘cfv 6486 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fv 6494 df-om 7803 |
| This theorem is referenced by: findreccl 36518 |
| Copyright terms: Public domain | W3C validator |