| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > findfvcl | Structured version Visualization version GIF version | ||
| Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| findfvcl.1 | ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) |
| findfvcl.2 | ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
| Ref | Expression |
|---|---|
| findfvcl | ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveleq 36484 | . 2 ⊢ (𝑥 = ∅ → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃))) | |
| 2 | fveleq 36484 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝑦) ∈ 𝑃))) | |
| 3 | fveleq 36484 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
| 4 | fveleq 36484 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 → (𝐹‘𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝐴) ∈ 𝑃))) | |
| 5 | findfvcl.1 | . 2 ⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) | |
| 6 | findfvcl.2 | . . 3 ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) | |
| 7 | 6 | a2d 29 | . 2 ⊢ (𝑦 ∈ ω → ((𝜑 → (𝐹‘𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃))) |
| 8 | 1, 2, 3, 4, 5, 7 | finds 7826 | 1 ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∅c0 4283 suc csuc 6308 ‘cfv 6481 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fv 6489 df-om 7797 |
| This theorem is referenced by: findreccl 36486 |
| Copyright terms: Public domain | W3C validator |