Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findfvcl Structured version   Visualization version   GIF version

Theorem findfvcl 36475
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Hypotheses
Ref Expression
findfvcl.1 (𝜑 → (𝐹‘∅) ∈ 𝑃)
findfvcl.2 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
Assertion
Ref Expression
findfvcl (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Distinct variable groups:   𝑦,𝐹   𝑦,𝑃   𝜑,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem findfvcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveleq 36474 . 2 (𝑥 = ∅ → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃)))
2 fveleq 36474 . 2 (𝑥 = 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝑦) ∈ 𝑃)))
3 fveleq 36474 . 2 (𝑥 = suc 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
4 fveleq 36474 . 2 (𝑥 = 𝐴 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐴) ∈ 𝑃)))
5 findfvcl.1 . 2 (𝜑 → (𝐹‘∅) ∈ 𝑃)
6 findfvcl.2 . . 3 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
76a2d 29 . 2 (𝑦 ∈ ω → ((𝜑 → (𝐹𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
81, 2, 3, 4, 5, 7finds 7897 1 (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  c0 4313  suc csuc 6359  cfv 6536  ωcom 7866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fv 6544  df-om 7867
This theorem is referenced by:  findreccl  36476
  Copyright terms: Public domain W3C validator