Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findfvcl Structured version   Visualization version   GIF version

Theorem findfvcl 34568
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Hypotheses
Ref Expression
findfvcl.1 (𝜑 → (𝐹‘∅) ∈ 𝑃)
findfvcl.2 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
Assertion
Ref Expression
findfvcl (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Distinct variable groups:   𝑦,𝐹   𝑦,𝑃   𝜑,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem findfvcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveleq 34567 . 2 (𝑥 = ∅ → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃)))
2 fveleq 34567 . 2 (𝑥 = 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝑦) ∈ 𝑃)))
3 fveleq 34567 . 2 (𝑥 = suc 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
4 fveleq 34567 . 2 (𝑥 = 𝐴 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐴) ∈ 𝑃)))
5 findfvcl.1 . 2 (𝜑 → (𝐹‘∅) ∈ 𝑃)
6 findfvcl.2 . . 3 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
76a2d 29 . 2 (𝑦 ∈ ω → ((𝜑 → (𝐹𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
81, 2, 3, 4, 5, 7finds 7719 1 (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  c0 4253  suc csuc 6253  cfv 6418  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fv 6426  df-om 7688
This theorem is referenced by:  findreccl  34569
  Copyright terms: Public domain W3C validator