Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findfvcl Structured version   Visualization version   GIF version

Theorem findfvcl 34378
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Hypotheses
Ref Expression
findfvcl.1 (𝜑 → (𝐹‘∅) ∈ 𝑃)
findfvcl.2 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
Assertion
Ref Expression
findfvcl (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Distinct variable groups:   𝑦,𝐹   𝑦,𝑃   𝜑,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem findfvcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveleq 34377 . 2 (𝑥 = ∅ → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃)))
2 fveleq 34377 . 2 (𝑥 = 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝑦) ∈ 𝑃)))
3 fveleq 34377 . 2 (𝑥 = suc 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
4 fveleq 34377 . 2 (𝑥 = 𝐴 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐴) ∈ 𝑃)))
5 findfvcl.1 . 2 (𝜑 → (𝐹‘∅) ∈ 𝑃)
6 findfvcl.2 . . 3 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
76a2d 29 . 2 (𝑦 ∈ ω → ((𝜑 → (𝐹𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
81, 2, 3, 4, 5, 7finds 7676 1 (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  c0 4237  suc csuc 6215  cfv 6380  ωcom 7644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fv 6388  df-om 7645
This theorem is referenced by:  findreccl  34379
  Copyright terms: Public domain W3C validator