Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findfvcl Structured version   Visualization version   GIF version

Theorem findfvcl 36435
Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
Hypotheses
Ref Expression
findfvcl.1 (𝜑 → (𝐹‘∅) ∈ 𝑃)
findfvcl.2 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
Assertion
Ref Expression
findfvcl (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Distinct variable groups:   𝑦,𝐹   𝑦,𝑃   𝜑,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem findfvcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveleq 36434 . 2 (𝑥 = ∅ → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘∅) ∈ 𝑃)))
2 fveleq 36434 . 2 (𝑥 = 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝑦) ∈ 𝑃)))
3 fveleq 36434 . 2 (𝑥 = suc 𝑦 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
4 fveleq 36434 . 2 (𝑥 = 𝐴 → ((𝜑 → (𝐹𝑥) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐴) ∈ 𝑃)))
5 findfvcl.1 . 2 (𝜑 → (𝐹‘∅) ∈ 𝑃)
6 findfvcl.2 . . 3 (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))
76a2d 29 . 2 (𝑦 ∈ ω → ((𝜑 → (𝐹𝑦) ∈ 𝑃) → (𝜑 → (𝐹‘suc 𝑦) ∈ 𝑃)))
81, 2, 3, 4, 5, 7finds 7919 1 (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  c0 4339  suc csuc 6388  cfv 6563  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fv 6571  df-om 7888
This theorem is referenced by:  findreccl  36436
  Copyright terms: Public domain W3C validator