Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oninhaus Structured version   Visualization version   GIF version

Theorem oninhaus 36494
Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.)
Assertion
Ref Expression
oninhaus (On ∩ Haus) = {1o, 2o}

Proof of Theorem oninhaus
StepHypRef Expression
1 haust1 23267 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Fre)
21ssriv 3933 . . . 4 Haus ⊆ Fre
3 sslin 4190 . . . 4 (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre))
42, 3ax-mp 5 . . 3 (On ∩ Haus) ⊆ (On ∩ Fre)
5 onint1 36493 . . 3 (On ∩ Fre) = {1o, 2o}
64, 5sseqtri 3978 . 2 (On ∩ Haus) ⊆ {1o, 2o}
7 ssoninhaus 36492 . 2 {1o, 2o} ⊆ (On ∩ Haus)
86, 7eqssi 3946 1 (On ∩ Haus) = {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cin 3896  wss 3897  {cpr 4575  Oncon0 6306  1oc1o 8378  2oc2o 8379  Frect1 23222  Hauscha 23223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-1o 8385  df-2o 8386  df-topgen 17347  df-top 22809  df-topon 22826  df-cld 22934  df-t1 23229  df-haus 23230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator