![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oninhaus | Structured version Visualization version GIF version |
Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
oninhaus | ⊢ (On ∩ Haus) = {1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 22609 | . . . . 5 ⊢ (𝑥 ∈ Haus → 𝑥 ∈ Fre) | |
2 | 1 | ssriv 3940 | . . . 4 ⊢ Haus ⊆ Fre |
3 | sslin 4186 | . . . 4 ⊢ (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (On ∩ Haus) ⊆ (On ∩ Fre) |
5 | onint1 34775 | . . 3 ⊢ (On ∩ Fre) = {1o, 2o} | |
6 | 4, 5 | sseqtri 3972 | . 2 ⊢ (On ∩ Haus) ⊆ {1o, 2o} |
7 | ssoninhaus 34774 | . 2 ⊢ {1o, 2o} ⊆ (On ∩ Haus) | |
8 | 6, 7 | eqssi 3952 | 1 ⊢ (On ∩ Haus) = {1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∩ cin 3901 ⊆ wss 3902 {cpr 4580 Oncon0 6307 1oc1o 8365 2oc2o 8366 Frect1 22564 Hauscha 22565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-fv 6492 df-1o 8372 df-2o 8373 df-topgen 17252 df-top 22149 df-topon 22166 df-cld 22276 df-t1 22571 df-haus 22572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |