Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oninhaus Structured version   Visualization version   GIF version

Theorem oninhaus 34639
Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.)
Assertion
Ref Expression
oninhaus (On ∩ Haus) = {1o, 2o}

Proof of Theorem oninhaus
StepHypRef Expression
1 haust1 22503 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Fre)
21ssriv 3925 . . . 4 Haus ⊆ Fre
3 sslin 4168 . . . 4 (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre))
42, 3ax-mp 5 . . 3 (On ∩ Haus) ⊆ (On ∩ Fre)
5 onint1 34638 . . 3 (On ∩ Fre) = {1o, 2o}
64, 5sseqtri 3957 . 2 (On ∩ Haus) ⊆ {1o, 2o}
7 ssoninhaus 34637 . 2 {1o, 2o} ⊆ (On ∩ Haus)
86, 7eqssi 3937 1 (On ∩ Haus) = {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3886  wss 3887  {cpr 4563  Oncon0 6266  1oc1o 8290  2oc2o 8291  Frect1 22458  Hauscha 22459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-1o 8297  df-2o 8298  df-topgen 17154  df-top 22043  df-topon 22060  df-cld 22170  df-t1 22465  df-haus 22466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator