Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oninhaus Structured version   Visualization version   GIF version

Theorem oninhaus 35638
Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.)
Assertion
Ref Expression
oninhaus (On ∩ Haus) = {1o, 2o}

Proof of Theorem oninhaus
StepHypRef Expression
1 haust1 23076 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Fre)
21ssriv 3986 . . . 4 Haus ⊆ Fre
3 sslin 4234 . . . 4 (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre))
42, 3ax-mp 5 . . 3 (On ∩ Haus) ⊆ (On ∩ Fre)
5 onint1 35637 . . 3 (On ∩ Fre) = {1o, 2o}
64, 5sseqtri 4018 . 2 (On ∩ Haus) ⊆ {1o, 2o}
7 ssoninhaus 35636 . 2 {1o, 2o} ⊆ (On ∩ Haus)
86, 7eqssi 3998 1 (On ∩ Haus) = {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cin 3947  wss 3948  {cpr 4630  Oncon0 6364  1oc1o 8461  2oc2o 8462  Frect1 23031  Hauscha 23032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-1o 8468  df-2o 8469  df-topgen 17393  df-top 22616  df-topon 22633  df-cld 22743  df-t1 23038  df-haus 23039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator