| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oninhaus | Structured version Visualization version GIF version | ||
| Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.) |
| Ref | Expression |
|---|---|
| oninhaus | ⊢ (On ∩ Haus) = {1o, 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23255 | . . . . 5 ⊢ (𝑥 ∈ Haus → 𝑥 ∈ Fre) | |
| 2 | 1 | ssriv 3941 | . . . 4 ⊢ Haus ⊆ Fre |
| 3 | sslin 4196 | . . . 4 ⊢ (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (On ∩ Haus) ⊆ (On ∩ Fre) |
| 5 | onint1 36425 | . . 3 ⊢ (On ∩ Fre) = {1o, 2o} | |
| 6 | 4, 5 | sseqtri 3986 | . 2 ⊢ (On ∩ Haus) ⊆ {1o, 2o} |
| 7 | ssoninhaus 36424 | . 2 ⊢ {1o, 2o} ⊆ (On ∩ Haus) | |
| 8 | 6, 7 | eqssi 3954 | 1 ⊢ (On ∩ Haus) = {1o, 2o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3904 ⊆ wss 3905 {cpr 4581 Oncon0 6311 1oc1o 8388 2oc2o 8389 Frect1 23210 Hauscha 23211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-1o 8395 df-2o 8396 df-topgen 17365 df-top 22797 df-topon 22814 df-cld 22922 df-t1 23217 df-haus 23218 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |