Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oninhaus | Structured version Visualization version GIF version |
Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.) |
Ref | Expression |
---|---|
oninhaus | ⊢ (On ∩ Haus) = {1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 22503 | . . . . 5 ⊢ (𝑥 ∈ Haus → 𝑥 ∈ Fre) | |
2 | 1 | ssriv 3925 | . . . 4 ⊢ Haus ⊆ Fre |
3 | sslin 4168 | . . . 4 ⊢ (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (On ∩ Haus) ⊆ (On ∩ Fre) |
5 | onint1 34638 | . . 3 ⊢ (On ∩ Fre) = {1o, 2o} | |
6 | 4, 5 | sseqtri 3957 | . 2 ⊢ (On ∩ Haus) ⊆ {1o, 2o} |
7 | ssoninhaus 34637 | . 2 ⊢ {1o, 2o} ⊆ (On ∩ Haus) | |
8 | 6, 7 | eqssi 3937 | 1 ⊢ (On ∩ Haus) = {1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 ⊆ wss 3887 {cpr 4563 Oncon0 6266 1oc1o 8290 2oc2o 8291 Frect1 22458 Hauscha 22459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-1o 8297 df-2o 8298 df-topgen 17154 df-top 22043 df-topon 22060 df-cld 22170 df-t1 22465 df-haus 22466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |