| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oninhaus | Structured version Visualization version GIF version | ||
| Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.) |
| Ref | Expression |
|---|---|
| oninhaus | ⊢ (On ∩ Haus) = {1o, 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23295 | . . . . 5 ⊢ (𝑥 ∈ Haus → 𝑥 ∈ Fre) | |
| 2 | 1 | ssriv 3967 | . . . 4 ⊢ Haus ⊆ Fre |
| 3 | sslin 4223 | . . . 4 ⊢ (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (On ∩ Haus) ⊆ (On ∩ Fre) |
| 5 | onint1 36472 | . . 3 ⊢ (On ∩ Fre) = {1o, 2o} | |
| 6 | 4, 5 | sseqtri 4012 | . 2 ⊢ (On ∩ Haus) ⊆ {1o, 2o} |
| 7 | ssoninhaus 36471 | . 2 ⊢ {1o, 2o} ⊆ (On ∩ Haus) | |
| 8 | 6, 7 | eqssi 3980 | 1 ⊢ (On ∩ Haus) = {1o, 2o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 ⊆ wss 3931 {cpr 4608 Oncon0 6357 1oc1o 8478 2oc2o 8479 Frect1 23250 Hauscha 23251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-1o 8485 df-2o 8486 df-topgen 17462 df-top 22837 df-topon 22854 df-cld 22962 df-t1 23257 df-haus 23258 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |