Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oninhaus Structured version   Visualization version   GIF version

Theorem oninhaus 34566
Description: The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.)
Assertion
Ref Expression
oninhaus (On ∩ Haus) = {1o, 2o}

Proof of Theorem oninhaus
StepHypRef Expression
1 haust1 22411 . . . . 5 (𝑥 ∈ Haus → 𝑥 ∈ Fre)
21ssriv 3921 . . . 4 Haus ⊆ Fre
3 sslin 4165 . . . 4 (Haus ⊆ Fre → (On ∩ Haus) ⊆ (On ∩ Fre))
42, 3ax-mp 5 . . 3 (On ∩ Haus) ⊆ (On ∩ Fre)
5 onint1 34565 . . 3 (On ∩ Fre) = {1o, 2o}
64, 5sseqtri 3953 . 2 (On ∩ Haus) ⊆ {1o, 2o}
7 ssoninhaus 34564 . 2 {1o, 2o} ⊆ (On ∩ Haus)
86, 7eqssi 3933 1 (On ∩ Haus) = {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3882  wss 3883  {cpr 4560  Oncon0 6251  1oc1o 8260  2oc2o 8261  Frect1 22366  Hauscha 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-1o 8267  df-2o 8268  df-topgen 17071  df-top 21951  df-topon 21968  df-cld 22078  df-t1 22373  df-haus 22374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator