Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsb Structured version   Visualization version   GIF version

Theorem fvsb 44492
Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Assertion
Ref Expression
fvsb (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fvsb
StepHypRef Expression
1 df-fv 6489 . . 3 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 dfsbcq 3738 . . 3 ((𝐹𝐴) = (℩𝑦𝐴𝐹𝑦) → ([(𝐹𝐴) / 𝑥]𝜑[(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑))
31, 2ax-mp 5 . 2 ([(𝐹𝐴) / 𝑥]𝜑[(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑)
4 iotasbc 44460 . 2 (∃!𝑦 𝐴𝐹𝑦 → ([(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
53, 4bitrid 283 1 (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  ∃!weu 2563  [wsbc 3736   class class class wbr 5089  cio 6435  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-sbc 3737  df-un 3902  df-ss 3914  df-sn 4574  df-pr 4576  df-uni 4857  df-iota 6437  df-fv 6489
This theorem is referenced by:  fveqsb  44493
  Copyright terms: Public domain W3C validator