Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsb | Structured version Visualization version GIF version |
Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
fvsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6455 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | dfsbcq 3720 | . . 3 ⊢ ((𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑) |
4 | iotasbc 42061 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
5 | 3, 4 | bitrid 282 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∃!weu 2563 [wsbc 3718 class class class wbr 5077 ℩cio 6397 ‘cfv 6447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-12 2166 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-sbc 3719 df-un 3894 df-in 3896 df-ss 3906 df-sn 4565 df-pr 4567 df-uni 4842 df-iota 6399 df-fv 6455 |
This theorem is referenced by: fveqsb 42095 |
Copyright terms: Public domain | W3C validator |