| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsb | Structured version Visualization version GIF version | ||
| Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| fvsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6568 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | dfsbcq 3789 | . . 3 ⊢ ((𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑) |
| 4 | iotasbc 44443 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∃!weu 2567 [wsbc 3787 class class class wbr 5142 ℩cio 6511 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-sbc 3788 df-un 3955 df-ss 3967 df-sn 4626 df-pr 4628 df-uni 4907 df-iota 6513 df-fv 6568 |
| This theorem is referenced by: fveqsb 44477 |
| Copyright terms: Public domain | W3C validator |