![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsb | Structured version Visualization version GIF version |
Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
fvsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6196 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | dfsbcq 3684 | . . 3 ⊢ ((𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑) |
4 | iotasbc 40165 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
5 | 3, 4 | syl5bb 275 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 = wceq 1507 ∃wex 1742 ∃!weu 2583 [wsbc 3682 class class class wbr 4929 ℩cio 6150 ‘cfv 6188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-rex 3095 df-v 3418 df-sbc 3683 df-un 3835 df-sn 4442 df-pr 4444 df-uni 4713 df-iota 6152 df-fv 6196 |
This theorem is referenced by: fveqsb 40201 |
Copyright terms: Public domain | W3C validator |