Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsb | Structured version Visualization version GIF version |
Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
fvsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6426 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | dfsbcq 3713 | . . 3 ⊢ ((𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑) |
4 | iotasbc 41926 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
5 | 3, 4 | syl5bb 282 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∃!weu 2568 [wsbc 3711 class class class wbr 5070 ℩cio 6374 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-fv 6426 |
This theorem is referenced by: fveqsb 41960 |
Copyright terms: Public domain | W3C validator |