Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsb Structured version   Visualization version   GIF version

Theorem fvsb 44031
Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Assertion
Ref Expression
fvsb (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem fvsb
StepHypRef Expression
1 df-fv 6557 . . 3 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 dfsbcq 3775 . . 3 ((𝐹𝐴) = (℩𝑦𝐴𝐹𝑦) → ([(𝐹𝐴) / 𝑥]𝜑[(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑))
31, 2ax-mp 5 . 2 ([(𝐹𝐴) / 𝑥]𝜑[(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑)
4 iotasbc 43998 . 2 (∃!𝑦 𝐴𝐹𝑦 → ([(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
53, 4bitrid 282 1 (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wex 1773  ∃!weu 2556  [wsbc 3773   class class class wbr 5149  cio 6499  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-sbc 3774  df-un 3949  df-ss 3961  df-sn 4631  df-pr 4633  df-uni 4910  df-iota 6501  df-fv 6557
This theorem is referenced by:  fveqsb  44032
  Copyright terms: Public domain W3C validator