| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvsb | Structured version Visualization version GIF version | ||
| Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| fvsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6489 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | dfsbcq 3738 | . . 3 ⊢ ((𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ [(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑) |
| 4 | iotasbc 44460 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(℩𝑦𝐴𝐹𝑦) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
| 5 | 3, 4 | bitrid 283 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∃!weu 2563 [wsbc 3736 class class class wbr 5089 ℩cio 6435 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: fveqsb 44493 |
| Copyright terms: Public domain | W3C validator |