Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordpss | Structured version Visualization version GIF version |
Description: ordelpss 6279 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordpss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 6273 | . . . 4 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
2 | 1 | ex 412 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → Ord 𝐴)) |
3 | 2 | ancrd 551 | . 2 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → (Ord 𝐴 ∧ 𝐴 ∈ 𝐵))) |
4 | ordelpss 6279 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
5 | 4 | ancoms 458 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
6 | 5 | biimpd 228 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
7 | 6 | expimpd 453 | . 2 ⊢ (Ord 𝐵 → ((Ord 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊊ 𝐵)) |
8 | 3, 7 | syld 47 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊊ wpss 3884 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |