![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordpss | Structured version Visualization version GIF version |
Description: ordelpss 5967 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordpss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 5961 | . . . 4 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
2 | 1 | ex 402 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → Ord 𝐴)) |
3 | 2 | ancrd 548 | . 2 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → (Ord 𝐴 ∧ 𝐴 ∈ 𝐵))) |
4 | ordelpss 5967 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
5 | 4 | ancoms 451 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
6 | 5 | biimpd 221 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
7 | 6 | expimpd 446 | . 2 ⊢ (Ord 𝐵 → ((Ord 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊊ 𝐵)) |
8 | 3, 7 | syld 47 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ⊊ wpss 3768 Ord word 5938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-tr 4944 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-ord 5942 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |