Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordpss Structured version   Visualization version   GIF version

Theorem ordpss 42823
Description: ordelpss 6349 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordpss (Ord 𝐵 → (𝐴𝐵𝐴𝐵))

Proof of Theorem ordpss
StepHypRef Expression
1 ordelord 6343 . . . 4 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
21ex 414 . . 3 (Ord 𝐵 → (𝐴𝐵 → Ord 𝐴))
32ancrd 553 . 2 (Ord 𝐵 → (𝐴𝐵 → (Ord 𝐴𝐴𝐵)))
4 ordelpss 6349 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
54ancoms 460 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵𝐴𝐵))
65biimpd 228 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵𝐴𝐵))
76expimpd 455 . 2 (Ord 𝐵 → ((Ord 𝐴𝐴𝐵) → 𝐴𝐵))
83, 7syld 47 1 (Ord 𝐵 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wpss 3915  Ord word 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-tr 5227  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-ord 6324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator