![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordpss | Structured version Visualization version GIF version |
Description: ordelpss 6383 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordpss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 6377 | . . . 4 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
2 | 1 | ex 412 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → Ord 𝐴)) |
3 | 2 | ancrd 551 | . 2 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → (Ord 𝐴 ∧ 𝐴 ∈ 𝐵))) |
4 | ordelpss 6383 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
5 | 4 | ancoms 458 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
6 | 5 | biimpd 228 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
7 | 6 | expimpd 453 | . 2 ⊢ (Ord 𝐵 → ((Ord 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊊ 𝐵)) |
8 | 3, 7 | syld 47 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ⊊ wpss 3942 Ord word 6354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-ord 6358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |