Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordpss Structured version   Visualization version   GIF version

Theorem ordpss 44423
Description: ordelpss 6380 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordpss (Ord 𝐵 → (𝐴𝐵𝐴𝐵))

Proof of Theorem ordpss
StepHypRef Expression
1 ordelord 6374 . . . 4 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
21ex 412 . . 3 (Ord 𝐵 → (𝐴𝐵 → Ord 𝐴))
32ancrd 551 . 2 (Ord 𝐵 → (𝐴𝐵 → (Ord 𝐴𝐴𝐵)))
4 ordelpss 6380 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
54ancoms 458 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵𝐴𝐵))
65biimpd 229 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵𝐴𝐵))
76expimpd 453 . 2 (Ord 𝐵 → ((Ord 𝐴𝐴𝐵) → 𝐴𝐵))
83, 7syld 47 1 (Ord 𝐵 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wpss 3927  Ord word 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator