![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordpss | Structured version Visualization version GIF version |
Description: ordelpss 6392 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordpss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 6386 | . . . 4 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
2 | 1 | ex 413 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → Ord 𝐴)) |
3 | 2 | ancrd 552 | . 2 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → (Ord 𝐴 ∧ 𝐴 ∈ 𝐵))) |
4 | ordelpss 6392 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
5 | 4 | ancoms 459 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
6 | 5 | biimpd 228 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
7 | 6 | expimpd 454 | . 2 ⊢ (Ord 𝐵 → ((Ord 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊊ 𝐵)) |
8 | 3, 7 | syld 47 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊊ wpss 3949 Ord word 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |