| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqsb | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| fveqsb.2 | ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) |
| fveqsb.3 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| fveqsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6878 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | fveqsb.3 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | fveqsb.2 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbciegf 3800 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ 𝜓) |
| 6 | fvsb 44413 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
| 7 | 5, 6 | bitr3id 285 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 ∃!weu 2562 Vcvv 3455 [wsbc 3761 class class class wbr 5115 ‘cfv 6519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-nul 5269 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-sn 4598 df-pr 4600 df-uni 4880 df-iota 6472 df-fv 6527 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |