Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqsb Structured version   Visualization version   GIF version

Theorem fveqsb 42284
Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
fveqsb.2 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
fveqsb.3 𝑥𝜓
Assertion
Ref Expression
fveqsb (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem fveqsb
StepHypRef Expression
1 fvex 6817 . . 3 (𝐹𝐴) ∈ V
2 fveqsb.3 . . . 4 𝑥𝜓
3 fveqsb.2 . . . 4 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
42, 3sbciegf 3760 . . 3 ((𝐹𝐴) ∈ V → ([(𝐹𝐴) / 𝑥]𝜑𝜓))
51, 4ax-mp 5 . 2 ([(𝐹𝐴) / 𝑥]𝜑𝜓)
6 fvsb 42283 . 2 (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
75, 6bitr3id 285 1 (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537   = wceq 1539  wex 1779  wnf 1783  wcel 2104  ∃!weu 2566  Vcvv 3437  [wsbc 3721   class class class wbr 5081  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-nul 5239
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4566  df-pr 4568  df-uni 4845  df-iota 6410  df-fv 6466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator