Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqsb | Structured version Visualization version GIF version |
Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
fveqsb.2 | ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) |
fveqsb.3 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
fveqsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6817 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
2 | fveqsb.3 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | fveqsb.2 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbciegf 3760 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ 𝜓) |
6 | fvsb 42283 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
7 | 5, 6 | bitr3id 285 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2104 ∃!weu 2566 Vcvv 3437 [wsbc 3721 class class class wbr 5081 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4566 df-pr 4568 df-uni 4845 df-iota 6410 df-fv 6466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |