Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqsb Structured version   Visualization version   GIF version

Theorem fveqsb 44463
Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
fveqsb.2 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
fveqsb.3 𝑥𝜓
Assertion
Ref Expression
fveqsb (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem fveqsb
StepHypRef Expression
1 fvex 6924 . . 3 (𝐹𝐴) ∈ V
2 fveqsb.3 . . . 4 𝑥𝜓
3 fveqsb.2 . . . 4 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
42, 3sbciegf 3832 . . 3 ((𝐹𝐴) ∈ V → ([(𝐹𝐴) / 𝑥]𝜑𝜓))
51, 4ax-mp 5 . 2 ([(𝐹𝐴) / 𝑥]𝜑𝜓)
6 fvsb 44462 . 2 (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
75, 6bitr3id 285 1 (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1536   = wceq 1538  wex 1777  wnf 1781  wcel 2107  ∃!weu 2567  Vcvv 3479  [wsbc 3792   class class class wbr 5149  cfv 6566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-nul 5313
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-v 3481  df-sbc 3793  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-sn 4633  df-pr 4635  df-uni 4914  df-iota 6519  df-fv 6574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator