| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fveqsb | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| fveqsb.2 | ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) |
| fveqsb.3 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| fveqsb | ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6900 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | fveqsb.3 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | fveqsb.2 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐴) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | sbciegf 3811 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ 𝜓) |
| 6 | fvsb 44412 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹‘𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) | |
| 7 | 5, 6 | bitr3id 285 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥) ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 ∃!weu 2566 Vcvv 3464 [wsbc 3772 class class class wbr 5125 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-nul 5288 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-sn 4609 df-pr 4611 df-uni 4890 df-iota 6495 df-fv 6550 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |