Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqsb Structured version   Visualization version   GIF version

Theorem fveqsb 44413
Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
fveqsb.2 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
fveqsb.3 𝑥𝜓
Assertion
Ref Expression
fveqsb (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem fveqsb
StepHypRef Expression
1 fvex 6900 . . 3 (𝐹𝐴) ∈ V
2 fveqsb.3 . . . 4 𝑥𝜓
3 fveqsb.2 . . . 4 (𝑥 = (𝐹𝐴) → (𝜑𝜓))
42, 3sbciegf 3811 . . 3 ((𝐹𝐴) ∈ V → ([(𝐹𝐴) / 𝑥]𝜑𝜓))
51, 4ax-mp 5 . 2 ([(𝐹𝐴) / 𝑥]𝜑𝜓)
6 fvsb 44412 . 2 (∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
75, 6bitr3id 285 1 (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  wnf 1782  wcel 2107  ∃!weu 2566  Vcvv 3464  [wsbc 3772   class class class wbr 5125  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-nul 5288
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-sn 4609  df-pr 4611  df-uni 4890  df-iota 6495  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator