Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem2 Structured version   Visualization version   GIF version

Theorem gcdcllem2 15845
 Description: Lemma for gcdn0cl 15847, gcddvds 15848 and dvdslegcd 15849. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
gcdcllem2.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
gcdcllem2.2 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
Assertion
Ref Expression
gcdcllem2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
Distinct variable groups:   𝑧,𝑛,𝑀   𝑛,𝑁,𝑧
Allowed substitution hints:   𝑅(𝑧,𝑛)   𝑆(𝑧,𝑛)

Proof of Theorem gcdcllem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5056 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝑛𝑥𝑛))
21ralbidv 3192 . . . . 5 (𝑧 = 𝑥 → (∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛 ↔ ∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛))
3 gcdcllem2.1 . . . . 5 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
42, 3elrab2 3669 . . . 4 (𝑥𝑆 ↔ (𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛))
5 breq2 5057 . . . . . 6 (𝑛 = 𝑀 → (𝑥𝑛𝑥𝑀))
6 breq2 5057 . . . . . 6 (𝑛 = 𝑁 → (𝑥𝑛𝑥𝑁))
75, 6ralprg 4617 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛 ↔ (𝑥𝑀𝑥𝑁)))
87anbi2d 631 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛) ↔ (𝑥 ∈ ℤ ∧ (𝑥𝑀𝑥𝑁))))
94, 8syl5bb 286 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥𝑆 ↔ (𝑥 ∈ ℤ ∧ (𝑥𝑀𝑥𝑁))))
10 breq1 5056 . . . . 5 (𝑧 = 𝑥 → (𝑧𝑀𝑥𝑀))
11 breq1 5056 . . . . 5 (𝑧 = 𝑥 → (𝑧𝑁𝑥𝑁))
1210, 11anbi12d 633 . . . 4 (𝑧 = 𝑥 → ((𝑧𝑀𝑧𝑁) ↔ (𝑥𝑀𝑥𝑁)))
13 gcdcllem2.2 . . . 4 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
1412, 13elrab2 3669 . . 3 (𝑥𝑅 ↔ (𝑥 ∈ ℤ ∧ (𝑥𝑀𝑥𝑁)))
159, 14syl6rbbr 293 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥𝑅𝑥𝑆))
1615eqrdv 2822 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3133  {crab 3137  {cpr 4552   class class class wbr 5053  ℤcz 11976   ∥ cdvds 15605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rab 3142  df-v 3482  df-sbc 3759  df-un 3924  df-sn 4551  df-pr 4553  df-op 4557  df-br 5054 This theorem is referenced by:  gcdcllem3  15846
 Copyright terms: Public domain W3C validator