![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdcllem2 | Structured version Visualization version GIF version |
Description: Lemma for gcdn0cl 16448, gcddvds 16449 and dvdslegcd 16450. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
gcdcllem2.1 | ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} |
gcdcllem2.2 | ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} |
Ref | Expression |
---|---|
gcdcllem2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5152 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑀 ↔ 𝑥 ∥ 𝑀)) | |
2 | breq1 5152 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑁 ↔ 𝑥 ∥ 𝑁)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁) ↔ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) |
4 | gcdcllem2.2 | . . . 4 ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} | |
5 | 3, 4 | elrab2 3687 | . . 3 ⊢ (𝑥 ∈ 𝑅 ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) |
6 | breq1 5152 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑛 ↔ 𝑥 ∥ 𝑛)) | |
7 | 6 | ralbidv 3176 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛 ↔ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛)) |
8 | gcdcllem2.1 | . . . . 5 ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} | |
9 | 7, 8 | elrab2 3687 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛)) |
10 | breq2 5153 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑀)) | |
11 | breq2 5153 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑁)) | |
12 | 10, 11 | ralprg 4699 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛 ↔ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) |
13 | 12 | anbi2d 628 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛) ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁)))) |
14 | 9, 13 | bitrid 282 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁)))) |
15 | 5, 14 | bitr4id 289 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ 𝑆)) |
16 | 15 | eqrdv 2729 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 {cpr 4631 class class class wbr 5149 ℤcz 12563 ∥ cdvds 16202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 |
This theorem is referenced by: gcdcllem3 16447 |
Copyright terms: Public domain | W3C validator |