![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdcllem2 | Structured version Visualization version GIF version |
Description: Lemma for gcdn0cl 16536, gcddvds 16537 and dvdslegcd 16538. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
gcdcllem2.1 | ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} |
gcdcllem2.2 | ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} |
Ref | Expression |
---|---|
gcdcllem2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑀 ↔ 𝑥 ∥ 𝑀)) | |
2 | breq1 5151 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑁 ↔ 𝑥 ∥ 𝑁)) | |
3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁) ↔ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) |
4 | gcdcllem2.2 | . . . 4 ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} | |
5 | 3, 4 | elrab2 3698 | . . 3 ⊢ (𝑥 ∈ 𝑅 ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) |
6 | breq1 5151 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑛 ↔ 𝑥 ∥ 𝑛)) | |
7 | 6 | ralbidv 3176 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛 ↔ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛)) |
8 | gcdcllem2.1 | . . . . 5 ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} | |
9 | 7, 8 | elrab2 3698 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛)) |
10 | breq2 5152 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑀)) | |
11 | breq2 5152 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑁)) | |
12 | 10, 11 | ralprg 4701 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛 ↔ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) |
13 | 12 | anbi2d 630 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛) ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁)))) |
14 | 9, 13 | bitrid 283 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁)))) |
15 | 5, 14 | bitr4id 290 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ 𝑆)) |
16 | 15 | eqrdv 2733 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 {cpr 4633 class class class wbr 5148 ℤcz 12611 ∥ cdvds 16287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: gcdcllem3 16535 |
Copyright terms: Public domain | W3C validator |