|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gcdcllem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for gcdn0cl 16540, gcddvds 16541 and dvdslegcd 16542. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| Ref | Expression | 
|---|---|
| gcdcllem2.1 | ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} | 
| gcdcllem2.2 | ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} | 
| Ref | Expression | 
|---|---|
| gcdcllem2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1 5145 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑀 ↔ 𝑥 ∥ 𝑀)) | |
| 2 | breq1 5145 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑁 ↔ 𝑥 ∥ 𝑁)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁) ↔ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) | 
| 4 | gcdcllem2.2 | . . . 4 ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} | |
| 5 | 3, 4 | elrab2 3694 | . . 3 ⊢ (𝑥 ∈ 𝑅 ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) | 
| 6 | breq1 5145 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ∥ 𝑛 ↔ 𝑥 ∥ 𝑛)) | |
| 7 | 6 | ralbidv 3177 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛 ↔ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛)) | 
| 8 | gcdcllem2.1 | . . . . 5 ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} | |
| 9 | 7, 8 | elrab2 3694 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛)) | 
| 10 | breq2 5146 | . . . . . 6 ⊢ (𝑛 = 𝑀 → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑀)) | |
| 11 | breq2 5146 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑥 ∥ 𝑛 ↔ 𝑥 ∥ 𝑁)) | |
| 12 | 10, 11 | ralprg 4695 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛 ↔ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁))) | 
| 13 | 12 | anbi2d 630 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥 ∥ 𝑛) ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁)))) | 
| 14 | 9, 13 | bitrid 283 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ ℤ ∧ (𝑥 ∥ 𝑀 ∧ 𝑥 ∥ 𝑁)))) | 
| 15 | 5, 14 | bitr4id 290 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ 𝑆)) | 
| 16 | 15 | eqrdv 2734 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 {cpr 4627 class class class wbr 5142 ℤcz 12615 ∥ cdvds 16291 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 | 
| This theorem is referenced by: gcdcllem3 16539 | 
| Copyright terms: Public domain | W3C validator |