MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem2 Structured version   Visualization version   GIF version

Theorem gcdcllem2 16546
Description: Lemma for gcdn0cl 16548, gcddvds 16549 and dvdslegcd 16550. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
gcdcllem2.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
gcdcllem2.2 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
Assertion
Ref Expression
gcdcllem2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
Distinct variable groups:   𝑧,𝑛,𝑀   𝑛,𝑁,𝑧
Allowed substitution hints:   𝑅(𝑧,𝑛)   𝑆(𝑧,𝑛)

Proof of Theorem gcdcllem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5169 . . . . 5 (𝑧 = 𝑥 → (𝑧𝑀𝑥𝑀))
2 breq1 5169 . . . . 5 (𝑧 = 𝑥 → (𝑧𝑁𝑥𝑁))
31, 2anbi12d 631 . . . 4 (𝑧 = 𝑥 → ((𝑧𝑀𝑧𝑁) ↔ (𝑥𝑀𝑥𝑁)))
4 gcdcllem2.2 . . . 4 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
53, 4elrab2 3711 . . 3 (𝑥𝑅 ↔ (𝑥 ∈ ℤ ∧ (𝑥𝑀𝑥𝑁)))
6 breq1 5169 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝑛𝑥𝑛))
76ralbidv 3184 . . . . 5 (𝑧 = 𝑥 → (∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛 ↔ ∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛))
8 gcdcllem2.1 . . . . 5 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
97, 8elrab2 3711 . . . 4 (𝑥𝑆 ↔ (𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛))
10 breq2 5170 . . . . . 6 (𝑛 = 𝑀 → (𝑥𝑛𝑥𝑀))
11 breq2 5170 . . . . . 6 (𝑛 = 𝑁 → (𝑥𝑛𝑥𝑁))
1210, 11ralprg 4719 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛 ↔ (𝑥𝑀𝑥𝑁)))
1312anbi2d 629 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ ∀𝑛 ∈ {𝑀, 𝑁}𝑥𝑛) ↔ (𝑥 ∈ ℤ ∧ (𝑥𝑀𝑥𝑁))))
149, 13bitrid 283 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥𝑆 ↔ (𝑥 ∈ ℤ ∧ (𝑥𝑀𝑥𝑁))))
155, 14bitr4id 290 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥𝑅𝑥𝑆))
1615eqrdv 2738 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  {cpr 4650   class class class wbr 5166  cz 12639  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167
This theorem is referenced by:  gcdcllem3  16547
  Copyright terms: Public domain W3C validator