![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcddvds | Structured version Visualization version GIF version |
Description: The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
gcddvds | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12622 | . . . . . 6 ⊢ 0 ∈ ℤ | |
2 | dvds0 16306 | . . . . . 6 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∥ 0 |
4 | breq2 5152 | . . . . . . 7 ⊢ (𝑀 = 0 → (0 ∥ 𝑀 ↔ 0 ∥ 0)) | |
5 | breq2 5152 | . . . . . . 7 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
6 | 4, 5 | bi2anan9 638 | . . . . . 6 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ (0 ∥ 0 ∧ 0 ∥ 0))) |
7 | anidm 564 | . . . . . 6 ⊢ ((0 ∥ 0 ∧ 0 ∥ 0) ↔ 0 ∥ 0) | |
8 | 6, 7 | bitrdi 287 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) ↔ 0 ∥ 0)) |
9 | 3, 8 | mpbiri 258 | . . . 4 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) |
10 | oveq12 7440 | . . . . . . 7 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0)) | |
11 | gcd0val 16531 | . . . . . . 7 ⊢ (0 gcd 0) = 0 | |
12 | 10, 11 | eqtrdi 2791 | . . . . . 6 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = 0) |
13 | 12 | breq1d 5158 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
14 | 12 | breq1d 5158 | . . . . 5 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
15 | 13, 14 | anbi12d 632 | . . . 4 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))) |
16 | 9, 15 | mpbird 257 | . . 3 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
17 | 16 | adantl 481 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
18 | eqid 2735 | . . . . 5 ⊢ {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛 ∥ 𝑧} = {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛 ∥ 𝑧} | |
19 | eqid 2735 | . . . . 5 ⊢ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} = {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} | |
20 | 18, 19 | gcdcllem3 16535 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∈ ℕ ∧ (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )))) |
21 | 20 | simp2d 1142 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁)) |
22 | gcdn0val 16532 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | |
23 | 22 | breq1d 5158 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀)) |
24 | 22 | breq1d 5158 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁)) |
25 | 23, 24 | anbi12d 632 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ (sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∥ 𝑁))) |
26 | 21, 25 | mpbird 257 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
27 | 17, 26 | pm2.61dan 813 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 {cpr 4633 class class class wbr 5148 (class class class)co 7431 supcsup 9478 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 ℕcn 12264 ℤcz 12611 ∥ cdvds 16287 gcd cgcd 16528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 |
This theorem is referenced by: zeqzmulgcd 16544 divgcdz 16545 divgcdnn 16549 gcd0id 16553 gcdneg 16556 gcdaddmlem 16558 gcd1 16562 bezoutlem4 16576 dvdsgcdb 16579 dfgcd2 16580 mulgcd 16582 gcdzeq 16586 dvdsmulgcd 16590 sqgcd 16596 expgcd 16597 dvdssqlem 16600 bezoutr 16602 gcddvdslcm 16636 lcmgcdlem 16640 lcmgcdeq 16646 coprmgcdb 16683 mulgcddvds 16689 rpmulgcd2 16690 qredeu 16692 rpdvds 16694 divgcdcoprm0 16699 divgcdodd 16744 coprm 16745 rpexp 16756 divnumden 16782 phimullem 16813 hashgcdlem 16822 hashgcdeq 16823 phisum 16824 pythagtriplem4 16853 pythagtriplem19 16867 pcgcd1 16911 pc2dvds 16913 pockthlem 16939 odmulg 19589 odadd1 19881 odadd2 19882 znunit 21600 znrrg 21602 mpodvdsmulf1o 27252 dvdsmulf1o 27254 2sqlem8 27485 2sqcoprm 27494 qqhval2lem 33944 aks4d1p8d1 42066 gcdle1d 42344 gcdle2d 42345 dvdsexpnn 42347 fltdvdsabdvdsc 42625 goldbachthlem2 47471 divgcdoddALTV 47607 |
Copyright terms: Public domain | W3C validator |