MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem3 Structured version   Visualization version   GIF version

Theorem gcdcllem3 15688
Description: Lemma for gcdn0cl 15689, gcddvds 15690 and dvdslegcd 15691. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
gcdcllem2.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
gcdcllem2.2 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
Assertion
Ref Expression
gcdcllem3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Distinct variable groups:   𝑧,𝐾   𝑧,𝑛,𝑀   𝑛,𝑁,𝑧
Allowed substitution hints:   𝑅(𝑧,𝑛)   𝑆(𝑧,𝑛)   𝐾(𝑛)

Proof of Theorem gcdcllem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcdcllem2.2 . . . . 5 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
21ssrab3 3982 . . . 4 𝑅 ⊆ ℤ
3 prssi 4665 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ)
4 neorian 3079 . . . . . . . 8 ((𝑀 ≠ 0 ∨ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∧ 𝑁 = 0))
5 prid1g 4607 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁})
6 neeq1 3046 . . . . . . . . . . . 12 (𝑛 = 𝑀 → (𝑛 ≠ 0 ↔ 𝑀 ≠ 0))
76rspcev 3559 . . . . . . . . . . 11 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
85, 7sylan 580 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
98adantlr 711 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
10 prid2g 4608 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁})
11 neeq1 3046 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ≠ 0 ↔ 𝑁 ≠ 0))
1211rspcev 3559 . . . . . . . . . . 11 ((𝑁 ∈ {𝑀, 𝑁} ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1310, 12sylan 580 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1413adantll 710 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
159, 14jaodan 952 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∨ 𝑁 ≠ 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
164, 15sylan2br 594 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
17 gcdcllem2.1 . . . . . . . 8 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
1817gcdcllem1 15686 . . . . . . 7 (({𝑀, 𝑁} ⊆ ℤ ∧ ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
193, 16, 18syl2an2r 681 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2017, 1gcdcllem2 15687 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
21 neeq1 3046 . . . . . . . . 9 (𝑅 = 𝑆 → (𝑅 ≠ ∅ ↔ 𝑆 ≠ ∅))
22 raleq 3365 . . . . . . . . . 10 (𝑅 = 𝑆 → (∀𝑦𝑅 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦𝑥))
2322rexbidv 3260 . . . . . . . . 9 (𝑅 = 𝑆 → (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2421, 23anbi12d 630 . . . . . . . 8 (𝑅 = 𝑆 → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2520, 24syl 17 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2625adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2719, 26mpbird 258 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥))
28 suprzcl2 12192 . . . . . 6 ((𝑅 ⊆ ℤ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
292, 28mp3an1 1440 . . . . 5 ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
3027, 29syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ 𝑅)
312, 30sseldi 3891 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℤ)
3227simprd 496 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥)
33 1dvds 15462 . . . . . . 7 (𝑀 ∈ ℤ → 1 ∥ 𝑀)
34 1dvds 15462 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3533, 34anim12i 612 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
36 1z 11866 . . . . . . 7 1 ∈ ℤ
37 breq1 4969 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑀 ↔ 1 ∥ 𝑀))
38 breq1 4969 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑁 ↔ 1 ∥ 𝑁))
3937, 38anbi12d 630 . . . . . . . 8 (𝑧 = 1 → ((𝑧𝑀𝑧𝑁) ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4039, 1elrab2 3622 . . . . . . 7 (1 ∈ 𝑅 ↔ (1 ∈ ℤ ∧ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4136, 40mpbiran 705 . . . . . 6 (1 ∈ 𝑅 ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
4235, 41sylibr 235 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑅)
4342adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ∈ 𝑅)
44 suprzub 12193 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ∧ 1 ∈ 𝑅) → 1 ≤ sup(𝑅, ℝ, < ))
452, 32, 43, 44mp3an2i 1458 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ≤ sup(𝑅, ℝ, < ))
46 elnnz1 11862 . . 3 (sup(𝑅, ℝ, < ) ∈ ℕ ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ 1 ≤ sup(𝑅, ℝ, < )))
4731, 45, 46sylanbrc 583 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℕ)
48 breq1 4969 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑀 ↔ sup(𝑅, ℝ, < ) ∥ 𝑀))
49 breq1 4969 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑁 ↔ sup(𝑅, ℝ, < ) ∥ 𝑁))
5048, 49anbi12d 630 . . . . 5 (𝑥 = sup(𝑅, ℝ, < ) → ((𝑥𝑀𝑥𝑁) ↔ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
51 breq1 4969 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑀𝑥𝑀))
52 breq1 4969 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑁𝑥𝑁))
5351, 52anbi12d 630 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑀𝑧𝑁) ↔ (𝑥𝑀𝑥𝑁)))
5453cbvrabv 3434 . . . . . 6 {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)} = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
551, 54eqtri 2819 . . . . 5 𝑅 = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
5650, 55elrab2 3622 . . . 4 (sup(𝑅, ℝ, < ) ∈ 𝑅 ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
5730, 56sylib 219 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
5857simprd 496 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁))
59 breq1 4969 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑀𝐾𝑀))
60 breq1 4969 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑁𝐾𝑁))
6159, 60anbi12d 630 . . . . . 6 (𝑧 = 𝐾 → ((𝑧𝑀𝑧𝑁) ↔ (𝐾𝑀𝐾𝑁)))
6261, 1elrab2 3622 . . . . 5 (𝐾𝑅 ↔ (𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)))
6362biimpri 229 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)) → 𝐾𝑅)
64633impb 1108 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾𝑅)
65 suprzub 12193 . . . . 5 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥𝐾𝑅) → 𝐾 ≤ sup(𝑅, ℝ, < ))
66653expia 1114 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
672, 66mpan 686 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
6832, 64, 67syl2im 40 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < )))
6947, 58, 683jca 1121 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  {crab 3109  wss 3863  c0 4215  {cpr 4478   class class class wbr 4966  supcsup 8755  cr 10387  0cc0 10388  1c1 10389   < clt 10526  cle 10527  cn 11491  cz 11834  cdvds 15445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-sup 8757  df-inf 8758  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-n0 11751  df-z 11835  df-uz 12099  df-rp 12245  df-seq 13225  df-exp 13285  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-dvds 15446
This theorem is referenced by:  gcdn0cl  15689  gcddvds  15690  dvdslegcd  15691
  Copyright terms: Public domain W3C validator