MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem3 Structured version   Visualization version   GIF version

Theorem gcdcllem3 16381
Description: Lemma for gcdn0cl 16382, gcddvds 16383 and dvdslegcd 16384. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
gcdcllem2.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
gcdcllem2.2 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
Assertion
Ref Expression
gcdcllem3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Distinct variable groups:   𝑧,𝐾   𝑧,𝑛,𝑀   𝑛,𝑁,𝑧
Allowed substitution hints:   𝑅(𝑧,𝑛)   𝑆(𝑧,𝑛)   𝐾(𝑛)

Proof of Theorem gcdcllem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcdcllem2.2 . . . . 5 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
21ssrab3 4040 . . . 4 𝑅 ⊆ ℤ
3 prssi 4781 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ)
4 neorian 3039 . . . . . . . 8 ((𝑀 ≠ 0 ∨ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∧ 𝑁 = 0))
5 prid1g 4721 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁})
6 neeq1 3006 . . . . . . . . . . . 12 (𝑛 = 𝑀 → (𝑛 ≠ 0 ↔ 𝑀 ≠ 0))
76rspcev 3581 . . . . . . . . . . 11 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
85, 7sylan 580 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
98adantlr 713 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
10 prid2g 4722 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁})
11 neeq1 3006 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ≠ 0 ↔ 𝑁 ≠ 0))
1211rspcev 3581 . . . . . . . . . . 11 ((𝑁 ∈ {𝑀, 𝑁} ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1310, 12sylan 580 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1413adantll 712 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
159, 14jaodan 956 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∨ 𝑁 ≠ 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
164, 15sylan2br 595 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
17 gcdcllem2.1 . . . . . . . 8 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
1817gcdcllem1 16379 . . . . . . 7 (({𝑀, 𝑁} ⊆ ℤ ∧ ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
193, 16, 18syl2an2r 683 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2017, 1gcdcllem2 16380 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
21 neeq1 3006 . . . . . . . . 9 (𝑅 = 𝑆 → (𝑅 ≠ ∅ ↔ 𝑆 ≠ ∅))
22 raleq 3309 . . . . . . . . . 10 (𝑅 = 𝑆 → (∀𝑦𝑅 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦𝑥))
2322rexbidv 3175 . . . . . . . . 9 (𝑅 = 𝑆 → (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2421, 23anbi12d 631 . . . . . . . 8 (𝑅 = 𝑆 → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2520, 24syl 17 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2625adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2719, 26mpbird 256 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥))
28 suprzcl2 12863 . . . . . 6 ((𝑅 ⊆ ℤ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
292, 28mp3an1 1448 . . . . 5 ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
3027, 29syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ 𝑅)
312, 30sselid 3942 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℤ)
3227simprd 496 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥)
33 1dvds 16153 . . . . . . 7 (𝑀 ∈ ℤ → 1 ∥ 𝑀)
34 1dvds 16153 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3533, 34anim12i 613 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
36 1z 12533 . . . . . . 7 1 ∈ ℤ
37 breq1 5108 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑀 ↔ 1 ∥ 𝑀))
38 breq1 5108 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑁 ↔ 1 ∥ 𝑁))
3937, 38anbi12d 631 . . . . . . . 8 (𝑧 = 1 → ((𝑧𝑀𝑧𝑁) ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4039, 1elrab2 3648 . . . . . . 7 (1 ∈ 𝑅 ↔ (1 ∈ ℤ ∧ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4136, 40mpbiran 707 . . . . . 6 (1 ∈ 𝑅 ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
4235, 41sylibr 233 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑅)
4342adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ∈ 𝑅)
44 suprzub 12864 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ∧ 1 ∈ 𝑅) → 1 ≤ sup(𝑅, ℝ, < ))
452, 32, 43, 44mp3an2i 1466 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ≤ sup(𝑅, ℝ, < ))
46 elnnz1 12529 . . 3 (sup(𝑅, ℝ, < ) ∈ ℕ ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ 1 ≤ sup(𝑅, ℝ, < )))
4731, 45, 46sylanbrc 583 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℕ)
48 breq1 5108 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑀 ↔ sup(𝑅, ℝ, < ) ∥ 𝑀))
49 breq1 5108 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑁 ↔ sup(𝑅, ℝ, < ) ∥ 𝑁))
5048, 49anbi12d 631 . . . . 5 (𝑥 = sup(𝑅, ℝ, < ) → ((𝑥𝑀𝑥𝑁) ↔ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
51 breq1 5108 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑀𝑥𝑀))
52 breq1 5108 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑁𝑥𝑁))
5351, 52anbi12d 631 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑀𝑧𝑁) ↔ (𝑥𝑀𝑥𝑁)))
5453cbvrabv 3417 . . . . . 6 {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)} = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
551, 54eqtri 2764 . . . . 5 𝑅 = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
5650, 55elrab2 3648 . . . 4 (sup(𝑅, ℝ, < ) ∈ 𝑅 ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
5730, 56sylib 217 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
5857simprd 496 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁))
59 breq1 5108 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑀𝐾𝑀))
60 breq1 5108 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑁𝐾𝑁))
6159, 60anbi12d 631 . . . . . 6 (𝑧 = 𝐾 → ((𝑧𝑀𝑧𝑁) ↔ (𝐾𝑀𝐾𝑁)))
6261, 1elrab2 3648 . . . . 5 (𝐾𝑅 ↔ (𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)))
6362biimpri 227 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)) → 𝐾𝑅)
64633impb 1115 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾𝑅)
65 suprzub 12864 . . . . 5 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥𝐾𝑅) → 𝐾 ≤ sup(𝑅, ℝ, < ))
66653expia 1121 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
672, 66mpan 688 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
6832, 64, 67syl2im 40 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < )))
6947, 58, 683jca 1128 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  wss 3910  c0 4282  {cpr 4588   class class class wbr 5105  supcsup 9376  cr 11050  0cc0 11051  1c1 11052   < clt 11189  cle 11190  cn 12153  cz 12499  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137
This theorem is referenced by:  gcdn0cl  16382  gcddvds  16383  dvdslegcd  16384
  Copyright terms: Public domain W3C validator