MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem3 Structured version   Visualization version   GIF version

Theorem gcdcllem3 16471
Description: Lemma for gcdn0cl 16472, gcddvds 16473 and dvdslegcd 16474. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
gcdcllem2.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
gcdcllem2.2 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
Assertion
Ref Expression
gcdcllem3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Distinct variable groups:   𝑧,𝐾   𝑧,𝑛,𝑀   𝑛,𝑁,𝑧
Allowed substitution hints:   𝑅(𝑧,𝑛)   𝑆(𝑧,𝑛)   𝐾(𝑛)

Proof of Theorem gcdcllem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcdcllem2.2 . . . . 5 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
21ssrab3 4045 . . . 4 𝑅 ⊆ ℤ
3 prssi 4785 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ)
4 neorian 3020 . . . . . . . 8 ((𝑀 ≠ 0 ∨ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∧ 𝑁 = 0))
5 prid1g 4724 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁})
6 neeq1 2987 . . . . . . . . . . . 12 (𝑛 = 𝑀 → (𝑛 ≠ 0 ↔ 𝑀 ≠ 0))
76rspcev 3588 . . . . . . . . . . 11 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
85, 7sylan 580 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
98adantlr 715 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
10 prid2g 4725 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁})
11 neeq1 2987 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ≠ 0 ↔ 𝑁 ≠ 0))
1211rspcev 3588 . . . . . . . . . . 11 ((𝑁 ∈ {𝑀, 𝑁} ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1310, 12sylan 580 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1413adantll 714 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
159, 14jaodan 959 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∨ 𝑁 ≠ 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
164, 15sylan2br 595 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
17 gcdcllem2.1 . . . . . . . 8 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
1817gcdcllem1 16469 . . . . . . 7 (({𝑀, 𝑁} ⊆ ℤ ∧ ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
193, 16, 18syl2an2r 685 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2017, 1gcdcllem2 16470 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
21 neeq1 2987 . . . . . . . . 9 (𝑅 = 𝑆 → (𝑅 ≠ ∅ ↔ 𝑆 ≠ ∅))
22 raleq 3296 . . . . . . . . . 10 (𝑅 = 𝑆 → (∀𝑦𝑅 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦𝑥))
2322rexbidv 3157 . . . . . . . . 9 (𝑅 = 𝑆 → (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2421, 23anbi12d 632 . . . . . . . 8 (𝑅 = 𝑆 → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2520, 24syl 17 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2625adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2719, 26mpbird 257 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥))
28 suprzcl2 12897 . . . . . 6 ((𝑅 ⊆ ℤ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
292, 28mp3an1 1450 . . . . 5 ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
3027, 29syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ 𝑅)
312, 30sselid 3944 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℤ)
3227simprd 495 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥)
33 1dvds 16240 . . . . . . 7 (𝑀 ∈ ℤ → 1 ∥ 𝑀)
34 1dvds 16240 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3533, 34anim12i 613 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
36 1z 12563 . . . . . . 7 1 ∈ ℤ
37 breq1 5110 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑀 ↔ 1 ∥ 𝑀))
38 breq1 5110 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑁 ↔ 1 ∥ 𝑁))
3937, 38anbi12d 632 . . . . . . . 8 (𝑧 = 1 → ((𝑧𝑀𝑧𝑁) ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4039, 1elrab2 3662 . . . . . . 7 (1 ∈ 𝑅 ↔ (1 ∈ ℤ ∧ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4136, 40mpbiran 709 . . . . . 6 (1 ∈ 𝑅 ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
4235, 41sylibr 234 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑅)
4342adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ∈ 𝑅)
44 suprzub 12898 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ∧ 1 ∈ 𝑅) → 1 ≤ sup(𝑅, ℝ, < ))
452, 32, 43, 44mp3an2i 1468 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ≤ sup(𝑅, ℝ, < ))
46 elnnz1 12559 . . 3 (sup(𝑅, ℝ, < ) ∈ ℕ ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ 1 ≤ sup(𝑅, ℝ, < )))
4731, 45, 46sylanbrc 583 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℕ)
48 breq1 5110 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑀 ↔ sup(𝑅, ℝ, < ) ∥ 𝑀))
49 breq1 5110 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑁 ↔ sup(𝑅, ℝ, < ) ∥ 𝑁))
5048, 49anbi12d 632 . . . . 5 (𝑥 = sup(𝑅, ℝ, < ) → ((𝑥𝑀𝑥𝑁) ↔ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
51 breq1 5110 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑀𝑥𝑀))
52 breq1 5110 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑁𝑥𝑁))
5351, 52anbi12d 632 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑀𝑧𝑁) ↔ (𝑥𝑀𝑥𝑁)))
5453cbvrabv 3416 . . . . . 6 {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)} = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
551, 54eqtri 2752 . . . . 5 𝑅 = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
5650, 55elrab2 3662 . . . 4 (sup(𝑅, ℝ, < ) ∈ 𝑅 ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
5730, 56sylib 218 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
5857simprd 495 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁))
59 breq1 5110 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑀𝐾𝑀))
60 breq1 5110 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑁𝐾𝑁))
6159, 60anbi12d 632 . . . . . 6 (𝑧 = 𝐾 → ((𝑧𝑀𝑧𝑁) ↔ (𝐾𝑀𝐾𝑁)))
6261, 1elrab2 3662 . . . . 5 (𝐾𝑅 ↔ (𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)))
6362biimpri 228 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)) → 𝐾𝑅)
64633impb 1114 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾𝑅)
65 suprzub 12898 . . . . 5 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥𝐾𝑅) → 𝐾 ≤ sup(𝑅, ℝ, < ))
66653expia 1121 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
672, 66mpan 690 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
6832, 64, 67syl2im 40 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < )))
6947, 58, 683jca 1128 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  wss 3914  c0 4296  {cpr 4591   class class class wbr 5107  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cn 12186  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223
This theorem is referenced by:  gcdn0cl  16472  gcddvds  16473  dvdslegcd  16474
  Copyright terms: Public domain W3C validator