MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem1 Structured version   Visualization version   GIF version

Theorem gcdcllem1 15706
Description: Lemma for gcdn0cl 15709, gcddvds 15710 and dvdslegcd 15711. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypothesis
Ref Expression
gcdcllem1.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
Assertion
Ref Expression
gcdcllem1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝐴,𝑛,𝑥,𝑦,𝑧   𝑥,𝑆
Allowed substitution hints:   𝑆(𝑦,𝑧,𝑛)

Proof of Theorem gcdcllem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1z 11823 . . . . 5 1 ∈ ℤ
2 ssel 3845 . . . . . . 7 (𝐴 ⊆ ℤ → (𝑛𝐴𝑛 ∈ ℤ))
3 1dvds 15482 . . . . . . 7 (𝑛 ∈ ℤ → 1 ∥ 𝑛)
42, 3syl6 35 . . . . . 6 (𝐴 ⊆ ℤ → (𝑛𝐴 → 1 ∥ 𝑛))
54ralrimiv 3124 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑛𝐴 1 ∥ 𝑛)
6 breq1 4928 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑛 ↔ 1 ∥ 𝑛))
76ralbidv 3140 . . . . . . 7 (𝑧 = 1 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 1 ∥ 𝑛))
8 gcdcllem1.1 . . . . . . 7 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
97, 8elrab2 3592 . . . . . 6 (1 ∈ 𝑆 ↔ (1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛))
109biimpri 220 . . . . 5 ((1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛) → 1 ∈ 𝑆)
111, 5, 10sylancr 579 . . . 4 (𝐴 ⊆ ℤ → 1 ∈ 𝑆)
1211ne0d 4181 . . 3 (𝐴 ⊆ ℤ → 𝑆 ≠ ∅)
1312adantr 473 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → 𝑆 ≠ ∅)
14 neeq1 3022 . . . 4 (𝑛 = 𝑤 → (𝑛 ≠ 0 ↔ 𝑤 ≠ 0))
1514cbvrexv 3377 . . 3 (∃𝑛𝐴 𝑛 ≠ 0 ↔ ∃𝑤𝐴 𝑤 ≠ 0)
16 breq1 4928 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧𝑛𝑦𝑛))
1716ralbidv 3140 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 𝑦𝑛))
1817, 8elrab2 3592 . . . . . . . . . 10 (𝑦𝑆 ↔ (𝑦 ∈ ℤ ∧ ∀𝑛𝐴 𝑦𝑛))
1918simprbi 489 . . . . . . . . 9 (𝑦𝑆 → ∀𝑛𝐴 𝑦𝑛)
2018simplbi 490 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ℤ)
21 ssel2 3846 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
22 dvdsleabs 15519 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0) → (𝑦𝑛𝑦 ≤ (abs‘𝑛)))
23223expia 1102 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2421, 23sylan2 584 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ (𝐴 ⊆ ℤ ∧ 𝑛𝐴)) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2524anassrs 460 . . . . . . . . . . . . 13 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2625com23 86 . . . . . . . . . . . 12 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2726ralrimiva 3125 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2827ancoms 451 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2920, 28sylan2 584 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
30 r19.26 3113 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) ↔ (∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))))
31 pm3.35 791 . . . . . . . . . . 11 ((𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3231ralimi 3103 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3330, 32sylbir 227 . . . . . . . . 9 ((∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3419, 29, 33syl2an2 674 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3534ralrimiva 3125 . . . . . . 7 (𝐴 ⊆ ℤ → ∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
36 fveq2 6496 . . . . . . . . . . . 12 (𝑛 = 𝑤 → (abs‘𝑛) = (abs‘𝑤))
3736breq2d 4937 . . . . . . . . . . 11 (𝑛 = 𝑤 → (𝑦 ≤ (abs‘𝑛) ↔ 𝑦 ≤ (abs‘𝑤)))
3814, 37imbi12d 337 . . . . . . . . . 10 (𝑛 = 𝑤 → ((𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))))
3938cbvralv 3376 . . . . . . . . 9 (∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
4039ralbii 3108 . . . . . . . 8 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
41 ralcom 3288 . . . . . . . 8 (∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
42 r19.21v 3118 . . . . . . . . 9 (∀𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4342ralbii 3108 . . . . . . . 8 (∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4440, 41, 433bitri 289 . . . . . . 7 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4535, 44sylib 210 . . . . . 6 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
46 ssel2 3846 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
47 nn0abscl 14531 . . . . . . . . . . 11 (𝑤 ∈ ℤ → (abs‘𝑤) ∈ ℕ0)
4846, 47syl 17 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℕ0)
4948nn0zd 11896 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℤ)
50 breq2 4929 . . . . . . . . . . 11 (𝑥 = (abs‘𝑤) → (𝑦𝑥𝑦 ≤ (abs‘𝑤)))
5150ralbidv 3140 . . . . . . . . . 10 (𝑥 = (abs‘𝑤) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5251adantl 474 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝑤𝐴) ∧ 𝑥 = (abs‘𝑤)) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5349, 52rspcedv 3532 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (∀𝑦𝑆 𝑦 ≤ (abs‘𝑤) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5453imim2d 57 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → ((𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5554ralimdva 3120 . . . . . 6 (𝐴 ⊆ ℤ → (∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5645, 55mpd 15 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
57 r19.23v 3217 . . . . 5 (∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ↔ (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5856, 57sylib 210 . . . 4 (𝐴 ⊆ ℤ → (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5958imp 398 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑤𝐴 𝑤 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6015, 59sylan2b 585 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6113, 60jca 504 1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wne 2960  wral 3081  wrex 3082  {crab 3085  wss 3822  c0 4172   class class class wbr 4925  cfv 6185  0cc0 10333  1c1 10334  cle 10473  0cn0 11705  cz 11791  abscabs 14452  cdvds 15465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-sup 8699  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-seq 13183  df-exp 13243  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-dvds 15466
This theorem is referenced by:  gcdcllem3  15708
  Copyright terms: Public domain W3C validator