MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem1 Structured version   Visualization version   GIF version

Theorem gcdcllem1 16532
Description: Lemma for gcdn0cl 16535, gcddvds 16536 and dvdslegcd 16537. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypothesis
Ref Expression
gcdcllem1.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
Assertion
Ref Expression
gcdcllem1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝐴,𝑛,𝑥,𝑦,𝑧   𝑥,𝑆
Allowed substitution hints:   𝑆(𝑦,𝑧,𝑛)

Proof of Theorem gcdcllem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1z 12644 . . . . 5 1 ∈ ℤ
2 ssel 3988 . . . . . . 7 (𝐴 ⊆ ℤ → (𝑛𝐴𝑛 ∈ ℤ))
3 1dvds 16304 . . . . . . 7 (𝑛 ∈ ℤ → 1 ∥ 𝑛)
42, 3syl6 35 . . . . . 6 (𝐴 ⊆ ℤ → (𝑛𝐴 → 1 ∥ 𝑛))
54ralrimiv 3142 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑛𝐴 1 ∥ 𝑛)
6 breq1 5150 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑛 ↔ 1 ∥ 𝑛))
76ralbidv 3175 . . . . . . 7 (𝑧 = 1 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 1 ∥ 𝑛))
8 gcdcllem1.1 . . . . . . 7 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
97, 8elrab2 3697 . . . . . 6 (1 ∈ 𝑆 ↔ (1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛))
109biimpri 228 . . . . 5 ((1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛) → 1 ∈ 𝑆)
111, 5, 10sylancr 587 . . . 4 (𝐴 ⊆ ℤ → 1 ∈ 𝑆)
1211ne0d 4347 . . 3 (𝐴 ⊆ ℤ → 𝑆 ≠ ∅)
1312adantr 480 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → 𝑆 ≠ ∅)
14 neeq1 3000 . . . 4 (𝑛 = 𝑤 → (𝑛 ≠ 0 ↔ 𝑤 ≠ 0))
1514cbvrexvw 3235 . . 3 (∃𝑛𝐴 𝑛 ≠ 0 ↔ ∃𝑤𝐴 𝑤 ≠ 0)
16 breq1 5150 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧𝑛𝑦𝑛))
1716ralbidv 3175 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 𝑦𝑛))
1817, 8elrab2 3697 . . . . . . . . . 10 (𝑦𝑆 ↔ (𝑦 ∈ ℤ ∧ ∀𝑛𝐴 𝑦𝑛))
1918simprbi 496 . . . . . . . . 9 (𝑦𝑆 → ∀𝑛𝐴 𝑦𝑛)
2018simplbi 497 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ℤ)
21 ssel2 3989 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
22 dvdsleabs 16344 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0) → (𝑦𝑛𝑦 ≤ (abs‘𝑛)))
23223expia 1120 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2421, 23sylan2 593 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ (𝐴 ⊆ ℤ ∧ 𝑛𝐴)) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2524anassrs 467 . . . . . . . . . . . . 13 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2625com23 86 . . . . . . . . . . . 12 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2726ralrimiva 3143 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2827ancoms 458 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2920, 28sylan2 593 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
30 r19.26 3108 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) ↔ (∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))))
31 pm3.35 803 . . . . . . . . . . 11 ((𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3231ralimi 3080 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3330, 32sylbir 235 . . . . . . . . 9 ((∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3419, 29, 33syl2an2 686 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3534ralrimiva 3143 . . . . . . 7 (𝐴 ⊆ ℤ → ∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
36 fveq2 6906 . . . . . . . . . . . 12 (𝑛 = 𝑤 → (abs‘𝑛) = (abs‘𝑤))
3736breq2d 5159 . . . . . . . . . . 11 (𝑛 = 𝑤 → (𝑦 ≤ (abs‘𝑛) ↔ 𝑦 ≤ (abs‘𝑤)))
3814, 37imbi12d 344 . . . . . . . . . 10 (𝑛 = 𝑤 → ((𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))))
3938cbvralvw 3234 . . . . . . . . 9 (∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
4039ralbii 3090 . . . . . . . 8 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
41 ralcom 3286 . . . . . . . 8 (∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
42 r19.21v 3177 . . . . . . . . 9 (∀𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4342ralbii 3090 . . . . . . . 8 (∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4440, 41, 433bitri 297 . . . . . . 7 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4535, 44sylib 218 . . . . . 6 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
46 ssel2 3989 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
47 nn0abscl 15347 . . . . . . . . . . 11 (𝑤 ∈ ℤ → (abs‘𝑤) ∈ ℕ0)
4846, 47syl 17 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℕ0)
4948nn0zd 12636 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℤ)
50 breq2 5151 . . . . . . . . . . 11 (𝑥 = (abs‘𝑤) → (𝑦𝑥𝑦 ≤ (abs‘𝑤)))
5150ralbidv 3175 . . . . . . . . . 10 (𝑥 = (abs‘𝑤) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5251adantl 481 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝑤𝐴) ∧ 𝑥 = (abs‘𝑤)) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5349, 52rspcedv 3614 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (∀𝑦𝑆 𝑦 ≤ (abs‘𝑤) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5453imim2d 57 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → ((𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5554ralimdva 3164 . . . . . 6 (𝐴 ⊆ ℤ → (∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5645, 55mpd 15 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
57 r19.23v 3180 . . . . 5 (∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ↔ (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5856, 57sylib 218 . . . 4 (𝐴 ⊆ ℤ → (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5958imp 406 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑤𝐴 𝑤 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6015, 59sylan2b 594 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6113, 60jca 511 1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  wss 3962  c0 4338   class class class wbr 5147  cfv 6562  0cc0 11152  1c1 11153  cle 11293  0cn0 12523  cz 12610  abscabs 15269  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287
This theorem is referenced by:  gcdcllem3  16534
  Copyright terms: Public domain W3C validator