Step | Hyp | Ref
| Expression |
1 | | 1z 12350 |
. . . . 5
⊢ 1 ∈
ℤ |
2 | | ssel 3914 |
. . . . . . 7
⊢ (𝐴 ⊆ ℤ → (𝑛 ∈ 𝐴 → 𝑛 ∈ ℤ)) |
3 | | 1dvds 15980 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ → 1 ∥
𝑛) |
4 | 2, 3 | syl6 35 |
. . . . . 6
⊢ (𝐴 ⊆ ℤ → (𝑛 ∈ 𝐴 → 1 ∥ 𝑛)) |
5 | 4 | ralrimiv 3102 |
. . . . 5
⊢ (𝐴 ⊆ ℤ →
∀𝑛 ∈ 𝐴 1 ∥ 𝑛) |
6 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑧 = 1 → (𝑧 ∥ 𝑛 ↔ 1 ∥ 𝑛)) |
7 | 6 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑧 = 1 → (∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀𝑛 ∈ 𝐴 1 ∥ 𝑛)) |
8 | | gcdcllem1.1 |
. . . . . . 7
⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛} |
9 | 7, 8 | elrab2 3627 |
. . . . . 6
⊢ (1 ∈
𝑆 ↔ (1 ∈ ℤ
∧ ∀𝑛 ∈
𝐴 1 ∥ 𝑛)) |
10 | 9 | biimpri 227 |
. . . . 5
⊢ ((1
∈ ℤ ∧ ∀𝑛 ∈ 𝐴 1 ∥ 𝑛) → 1 ∈ 𝑆) |
11 | 1, 5, 10 | sylancr 587 |
. . . 4
⊢ (𝐴 ⊆ ℤ → 1 ∈
𝑆) |
12 | 11 | ne0d 4269 |
. . 3
⊢ (𝐴 ⊆ ℤ → 𝑆 ≠ ∅) |
13 | 12 | adantr 481 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → 𝑆 ≠ ∅) |
14 | | neeq1 3006 |
. . . 4
⊢ (𝑛 = 𝑤 → (𝑛 ≠ 0 ↔ 𝑤 ≠ 0)) |
15 | 14 | cbvrexvw 3384 |
. . 3
⊢
(∃𝑛 ∈
𝐴 𝑛 ≠ 0 ↔ ∃𝑤 ∈ 𝐴 𝑤 ≠ 0) |
16 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑛 ↔ 𝑦 ∥ 𝑛)) |
17 | 16 | ralbidv 3112 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛)) |
18 | 17, 8 | elrab2 3627 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℤ ∧ ∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛)) |
19 | 18 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 → ∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛) |
20 | 18 | simplbi 498 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ ℤ) |
21 | | ssel2 3916 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ ℤ) |
22 | | dvdsleabs 16020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0) → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛))) |
23 | 22 | 3expia 1120 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ≠ 0 → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛)))) |
24 | 21, 23 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℤ ∧ (𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴)) → (𝑛 ≠ 0 → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛)))) |
25 | 24 | anassrs 468 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛 ∈ 𝐴) → (𝑛 ≠ 0 → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛)))) |
26 | 25 | com23 86 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛 ∈ 𝐴) → (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
27 | 26 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) →
∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
28 | 27 | ancoms 459 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ) →
∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
29 | 20, 28 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆) → ∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
30 | | r19.26 3095 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
𝐴 (𝑦 ∥ 𝑛 ∧ (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) ↔ (∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ∧ ∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))) |
31 | | pm3.35 800 |
. . . . . . . . . . 11
⊢ ((𝑦 ∥ 𝑛 ∧ (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
32 | 31 | ralimi 3087 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
𝐴 (𝑦 ∥ 𝑛 ∧ (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
33 | 30, 32 | sylbir 234 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
𝐴 𝑦 ∥ 𝑛 ∧ ∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
34 | 19, 29, 33 | syl2an2 683 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆) → ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
35 | 34 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝐴 ⊆ ℤ →
∀𝑦 ∈ 𝑆 ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
36 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑤 → (abs‘𝑛) = (abs‘𝑤)) |
37 | 36 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑤 → (𝑦 ≤ (abs‘𝑛) ↔ 𝑦 ≤ (abs‘𝑤))) |
38 | 14, 37 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑤 → ((𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))) |
39 | 38 | cbvralvw 3383 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))) |
40 | 39 | ralbii 3092 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑆 ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑦 ∈ 𝑆 ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))) |
41 | | ralcom 3166 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑆 ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))) |
42 | | r19.21v 3113 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
43 | 42 | ralbii 3092 |
. . . . . . . 8
⊢
(∀𝑤 ∈
𝐴 ∀𝑦 ∈ 𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
44 | 40, 41, 43 | 3bitri 297 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑆 ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
45 | 35, 44 | sylib 217 |
. . . . . 6
⊢ (𝐴 ⊆ ℤ →
∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
46 | | ssel2 3916 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ) |
47 | | nn0abscl 15024 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ℤ →
(abs‘𝑤) ∈
ℕ0) |
48 | 46, 47 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → (abs‘𝑤) ∈
ℕ0) |
49 | 48 | nn0zd 12424 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → (abs‘𝑤) ∈ ℤ) |
50 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑥 = (abs‘𝑤) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (abs‘𝑤))) |
51 | 50 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑥 = (abs‘𝑤) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
52 | 51 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) ∧ 𝑥 = (abs‘𝑤)) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
53 | 49, 52 | rspcedv 3554 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
54 | 53 | imim2d 57 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → ((𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤)) → (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥))) |
55 | 54 | ralimdva 3108 |
. . . . . 6
⊢ (𝐴 ⊆ ℤ →
(∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤)) → ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥))) |
56 | 45, 55 | mpd 15 |
. . . . 5
⊢ (𝐴 ⊆ ℤ →
∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
57 | | r19.23v 3208 |
. . . . 5
⊢
(∀𝑤 ∈
𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ↔ (∃𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
58 | 56, 57 | sylib 217 |
. . . 4
⊢ (𝐴 ⊆ ℤ →
(∃𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
59 | 58 | imp 407 |
. . 3
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑤 ∈ 𝐴 𝑤 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
60 | 15, 59 | sylan2b 594 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
61 | 13, 60 | jca 512 |
1
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |