MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem1 Structured version   Visualization version   GIF version

Theorem gcdcllem1 15842
Description: Lemma for gcdn0cl 15845, gcddvds 15846 and dvdslegcd 15847. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypothesis
Ref Expression
gcdcllem1.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
Assertion
Ref Expression
gcdcllem1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝐴,𝑛,𝑥,𝑦,𝑧   𝑥,𝑆
Allowed substitution hints:   𝑆(𝑦,𝑧,𝑛)

Proof of Theorem gcdcllem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1z 12004 . . . . 5 1 ∈ ℤ
2 ssel 3911 . . . . . . 7 (𝐴 ⊆ ℤ → (𝑛𝐴𝑛 ∈ ℤ))
3 1dvds 15620 . . . . . . 7 (𝑛 ∈ ℤ → 1 ∥ 𝑛)
42, 3syl6 35 . . . . . 6 (𝐴 ⊆ ℤ → (𝑛𝐴 → 1 ∥ 𝑛))
54ralrimiv 3151 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑛𝐴 1 ∥ 𝑛)
6 breq1 5036 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑛 ↔ 1 ∥ 𝑛))
76ralbidv 3165 . . . . . . 7 (𝑧 = 1 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 1 ∥ 𝑛))
8 gcdcllem1.1 . . . . . . 7 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
97, 8elrab2 3634 . . . . . 6 (1 ∈ 𝑆 ↔ (1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛))
109biimpri 231 . . . . 5 ((1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛) → 1 ∈ 𝑆)
111, 5, 10sylancr 590 . . . 4 (𝐴 ⊆ ℤ → 1 ∈ 𝑆)
1211ne0d 4254 . . 3 (𝐴 ⊆ ℤ → 𝑆 ≠ ∅)
1312adantr 484 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → 𝑆 ≠ ∅)
14 neeq1 3052 . . . 4 (𝑛 = 𝑤 → (𝑛 ≠ 0 ↔ 𝑤 ≠ 0))
1514cbvrexvw 3400 . . 3 (∃𝑛𝐴 𝑛 ≠ 0 ↔ ∃𝑤𝐴 𝑤 ≠ 0)
16 breq1 5036 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧𝑛𝑦𝑛))
1716ralbidv 3165 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 𝑦𝑛))
1817, 8elrab2 3634 . . . . . . . . . 10 (𝑦𝑆 ↔ (𝑦 ∈ ℤ ∧ ∀𝑛𝐴 𝑦𝑛))
1918simprbi 500 . . . . . . . . 9 (𝑦𝑆 → ∀𝑛𝐴 𝑦𝑛)
2018simplbi 501 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ℤ)
21 ssel2 3913 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
22 dvdsleabs 15657 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0) → (𝑦𝑛𝑦 ≤ (abs‘𝑛)))
23223expia 1118 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2421, 23sylan2 595 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ (𝐴 ⊆ ℤ ∧ 𝑛𝐴)) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2524anassrs 471 . . . . . . . . . . . . 13 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2625com23 86 . . . . . . . . . . . 12 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2726ralrimiva 3152 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2827ancoms 462 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2920, 28sylan2 595 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
30 r19.26 3140 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) ↔ (∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))))
31 pm3.35 802 . . . . . . . . . . 11 ((𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3231ralimi 3131 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3330, 32sylbir 238 . . . . . . . . 9 ((∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3419, 29, 33syl2an2 685 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3534ralrimiva 3152 . . . . . . 7 (𝐴 ⊆ ℤ → ∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
36 fveq2 6649 . . . . . . . . . . . 12 (𝑛 = 𝑤 → (abs‘𝑛) = (abs‘𝑤))
3736breq2d 5045 . . . . . . . . . . 11 (𝑛 = 𝑤 → (𝑦 ≤ (abs‘𝑛) ↔ 𝑦 ≤ (abs‘𝑤)))
3814, 37imbi12d 348 . . . . . . . . . 10 (𝑛 = 𝑤 → ((𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))))
3938cbvralvw 3399 . . . . . . . . 9 (∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
4039ralbii 3136 . . . . . . . 8 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
41 ralcom 3310 . . . . . . . 8 (∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
42 r19.21v 3145 . . . . . . . . 9 (∀𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4342ralbii 3136 . . . . . . . 8 (∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4440, 41, 433bitri 300 . . . . . . 7 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4535, 44sylib 221 . . . . . 6 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
46 ssel2 3913 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
47 nn0abscl 14668 . . . . . . . . . . 11 (𝑤 ∈ ℤ → (abs‘𝑤) ∈ ℕ0)
4846, 47syl 17 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℕ0)
4948nn0zd 12077 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℤ)
50 breq2 5037 . . . . . . . . . . 11 (𝑥 = (abs‘𝑤) → (𝑦𝑥𝑦 ≤ (abs‘𝑤)))
5150ralbidv 3165 . . . . . . . . . 10 (𝑥 = (abs‘𝑤) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5251adantl 485 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝑤𝐴) ∧ 𝑥 = (abs‘𝑤)) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5349, 52rspcedv 3567 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (∀𝑦𝑆 𝑦 ≤ (abs‘𝑤) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5453imim2d 57 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → ((𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5554ralimdva 3147 . . . . . 6 (𝐴 ⊆ ℤ → (∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5645, 55mpd 15 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
57 r19.23v 3241 . . . . 5 (∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ↔ (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5856, 57sylib 221 . . . 4 (𝐴 ⊆ ℤ → (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5958imp 410 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑤𝐴 𝑤 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6015, 59sylan2b 596 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6113, 60jca 515 1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  wss 3884  c0 4246   class class class wbr 5033  cfv 6328  0cc0 10530  1c1 10531  cle 10669  0cn0 11889  cz 11973  abscabs 14589  cdvds 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604
This theorem is referenced by:  gcdcllem3  15844
  Copyright terms: Public domain W3C validator