MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslegcd Structured version   Visualization version   GIF version

Theorem dvdslegcd 16474
Description: An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdslegcd (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))

Proof of Theorem dvdslegcd
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . . . . 12 {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛𝑧} = {𝑛 ∈ ℤ ∣ ∀𝑧 ∈ {𝑀, 𝑁}𝑛𝑧}
2 eqid 2729 . . . . . . . . . . . 12 {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)} = {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}
31, 2gcdcllem3 16471 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∈ ℕ ∧ (sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑀 ∧ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))))
43simp3d 1144 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
5 gcdn0val 16468 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
65breq2d 5119 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝐾 ≤ (𝑀 gcd 𝑁) ↔ 𝐾 ≤ sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
74, 6sylibrd 259 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
87com12 32 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝐾 ≤ (𝑀 gcd 𝑁)))
983expb 1120 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝐾 ≤ (𝑀 gcd 𝑁)))
109com12 32 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)) → 𝐾 ≤ (𝑀 gcd 𝑁)))
1110exp4b 430 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝐾 ∈ ℤ → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))))
1211com23 86 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))))
1312impcom 407 . . 3 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))))
14133impb 1114 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))))
1514imp 406 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  {cpr 4591   class class class wbr 5107  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068   < clt 11208  cle 11209  cn 12186  cz 12529  cdvds 16222   gcd cgcd 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465
This theorem is referenced by:  nndvdslegcd  16475  gcd0id  16489  gcdneg  16492  gcdaddmlem  16494  bezoutlem4  16512  gcdzeq  16522  rpdvds  16630  coprm  16681  phimullem  16749  pockthlem  16876  2sqlem8a  27336  2sqlem8  27337
  Copyright terms: Public domain W3C validator