![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gte-lteh | Structured version Visualization version GIF version |
Description: Relationship between ≤ and ≥ using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gte-lteh.1 | ⊢ 𝐴 ∈ V |
gte-lteh.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
gte-lteh | ⊢ (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gte 48023 | . . 3 ⊢ ≥ = ◡ ≤ | |
2 | 1 | breqi 5147 | . 2 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐴◡ ≤ 𝐵) |
3 | gte-lteh.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | gte-lteh.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | brcnv 5875 | . 2 ⊢ (𝐴◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴) |
6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 Vcvv 3468 class class class wbr 5141 ◡ccnv 5668 ≤ cle 11250 ≥ cge-real 48021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-cnv 5677 df-gte 48023 |
This theorem is referenced by: ex-gte 48030 |
Copyright terms: Public domain | W3C validator |