Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gte-lteh Structured version   Visualization version   GIF version

Theorem gte-lteh 45178
Description: Relationship between and using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
gte-lteh.1 𝐴 ∈ V
gte-lteh.2 𝐵 ∈ V
Assertion
Ref Expression
gte-lteh (𝐴𝐵𝐵𝐴)

Proof of Theorem gte-lteh
StepHypRef Expression
1 df-gte 45174 . . 3 ≥ =
21breqi 5058 . 2 (𝐴𝐵𝐴𝐵)
3 gte-lteh.1 . . 3 𝐴 ∈ V
4 gte-lteh.2 . . 3 𝐵 ∈ V
53, 4brcnv 5740 . 2 (𝐴𝐵𝐵𝐴)
62, 5bitri 278 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2115  Vcvv 3480   class class class wbr 5052  ccnv 5541  cle 10674  cge-real 45172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-br 5053  df-opab 5115  df-cnv 5550  df-gte 45174
This theorem is referenced by:  ex-gte  45181
  Copyright terms: Public domain W3C validator