Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gte-lteh | Structured version Visualization version GIF version |
Description: Relationship between ≤ and ≥ using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gte-lteh.1 | ⊢ 𝐴 ∈ V |
gte-lteh.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
gte-lteh | ⊢ (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gte 46424 | . . 3 ⊢ ≥ = ◡ ≤ | |
2 | 1 | breqi 5080 | . 2 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐴◡ ≤ 𝐵) |
3 | gte-lteh.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | gte-lteh.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | brcnv 5791 | . 2 ⊢ (𝐴◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴) |
6 | 2, 5 | bitri 274 | 1 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ◡ccnv 5588 ≤ cle 11010 ≥ cge-real 46422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-gte 46424 |
This theorem is referenced by: ex-gte 46431 |
Copyright terms: Public domain | W3C validator |