Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gte-lteh Structured version   Visualization version   GIF version

Theorem gte-lteh 48235
Description: Relationship between and using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
gte-lteh.1 𝐴 ∈ V
gte-lteh.2 𝐵 ∈ V
Assertion
Ref Expression
gte-lteh (𝐴𝐵𝐵𝐴)

Proof of Theorem gte-lteh
StepHypRef Expression
1 df-gte 48231 . . 3 ≥ =
21breqi 5158 . 2 (𝐴𝐵𝐴𝐵)
3 gte-lteh.1 . . 3 𝐴 ∈ V
4 gte-lteh.2 . . 3 𝐵 ∈ V
53, 4brcnv 5889 . 2 (𝐴𝐵𝐵𝐴)
62, 5bitri 274 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  Vcvv 3473   class class class wbr 5152  ccnv 5681  cle 11287  cge-real 48229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-cnv 5690  df-gte 48231
This theorem is referenced by:  ex-gte  48238
  Copyright terms: Public domain W3C validator