Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gte-lteh Structured version   Visualization version   GIF version

Theorem gte-lteh 49557
Description: Relationship between and using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
gte-lteh.1 𝐴 ∈ V
gte-lteh.2 𝐵 ∈ V
Assertion
Ref Expression
gte-lteh (𝐴𝐵𝐵𝐴)

Proof of Theorem gte-lteh
StepHypRef Expression
1 df-gte 49553 . . 3 ≥ =
21breqi 5130 . 2 (𝐴𝐵𝐴𝐵)
3 gte-lteh.1 . . 3 𝐴 ∈ V
4 gte-lteh.2 . . 3 𝐵 ∈ V
53, 4brcnv 5867 . 2 (𝐴𝐵𝐵𝐴)
62, 5bitri 275 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3464   class class class wbr 5124  ccnv 5658  cle 11275  cge-real 49551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-cnv 5667  df-gte 49553
This theorem is referenced by:  ex-gte  49560
  Copyright terms: Public domain W3C validator