![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gte-lteh | Structured version Visualization version GIF version |
Description: Relationship between ≤ and ≥ using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gte-lteh.1 | ⊢ 𝐴 ∈ V |
gte-lteh.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
gte-lteh | ⊢ (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gte 48953 | . . 3 ⊢ ≥ = ◡ ≤ | |
2 | 1 | breqi 5154 | . 2 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐴◡ ≤ 𝐵) |
3 | gte-lteh.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | gte-lteh.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | brcnv 5896 | . 2 ⊢ (𝐴◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴) |
6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 ◡ccnv 5688 ≤ cle 11294 ≥ cge-real 48951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-gte 48953 |
This theorem is referenced by: ex-gte 48960 |
Copyright terms: Public domain | W3C validator |