Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gte-lteh Structured version   Visualization version   GIF version

Theorem gte-lteh 48957
Description: Relationship between and using hypotheses. (Contributed by David A. Wheeler, 10-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
gte-lteh.1 𝐴 ∈ V
gte-lteh.2 𝐵 ∈ V
Assertion
Ref Expression
gte-lteh (𝐴𝐵𝐵𝐴)

Proof of Theorem gte-lteh
StepHypRef Expression
1 df-gte 48953 . . 3 ≥ =
21breqi 5154 . 2 (𝐴𝐵𝐴𝐵)
3 gte-lteh.1 . . 3 𝐴 ∈ V
4 gte-lteh.2 . . 3 𝐵 ∈ V
53, 4brcnv 5896 . 2 (𝐴𝐵𝐵𝐴)
62, 5bitri 275 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  Vcvv 3478   class class class wbr 5148  ccnv 5688  cle 11294  cge-real 48951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-cnv 5697  df-gte 48953
This theorem is referenced by:  ex-gte  48960
  Copyright terms: Public domain W3C validator