![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gt-lth | Structured version Visualization version GIF version |
Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gt-lth.1 | ⊢ 𝐴 ∈ V |
gt-lth.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
gt-lth | ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gt 48016 | . . 3 ⊢ > = ◡ < | |
2 | 1 | breqi 5145 | . 2 ⊢ (𝐴 > 𝐵 ↔ 𝐴◡ < 𝐵) |
3 | gt-lth.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | gt-lth.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | brcnv 5873 | . 2 ⊢ (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴) |
6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 Vcvv 3466 class class class wbr 5139 ◡ccnv 5666 < clt 11247 > cgt 48014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-cnv 5675 df-gt 48016 |
This theorem is referenced by: ex-gt 48021 |
Copyright terms: Public domain | W3C validator |