Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gt-lth Structured version   Visualization version   GIF version

Theorem gt-lth 49720
Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
gt-lth.1 𝐴 ∈ V
gt-lth.2 𝐵 ∈ V
Assertion
Ref Expression
gt-lth (𝐴 > 𝐵𝐵 < 𝐴)

Proof of Theorem gt-lth
StepHypRef Expression
1 df-gt 49716 . . 3 > = <
21breqi 5116 . 2 (𝐴 > 𝐵𝐴 < 𝐵)
3 gt-lth.1 . . 3 𝐴 ∈ V
4 gt-lth.2 . . 3 𝐵 ∈ V
53, 4brcnv 5849 . 2 (𝐴 < 𝐵𝐵 < 𝐴)
62, 5bitri 275 1 (𝐴 > 𝐵𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3450   class class class wbr 5110  ccnv 5640   < clt 11215   > cgt 49714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-gt 49716
This theorem is referenced by:  ex-gt  49721
  Copyright terms: Public domain W3C validator