Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gt-lth Structured version   Visualization version   GIF version

Theorem gt-lth 49301
Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
gt-lth.1 𝐴 ∈ V
gt-lth.2 𝐵 ∈ V
Assertion
Ref Expression
gt-lth (𝐴 > 𝐵𝐵 < 𝐴)

Proof of Theorem gt-lth
StepHypRef Expression
1 df-gt 49297 . . 3 > = <
21breqi 5148 . 2 (𝐴 > 𝐵𝐴 < 𝐵)
3 gt-lth.1 . . 3 𝐴 ∈ V
4 gt-lth.2 . . 3 𝐵 ∈ V
53, 4brcnv 5892 . 2 (𝐴 < 𝐵𝐵 < 𝐴)
62, 5bitri 275 1 (𝐴 > 𝐵𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  Vcvv 3479   class class class wbr 5142  ccnv 5683   < clt 11296   > cgt 49295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-cnv 5692  df-gt 49297
This theorem is referenced by:  ex-gt  49302
  Copyright terms: Public domain W3C validator