|   | Mathbox for David A. Wheeler | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gt-lth | Structured version Visualization version GIF version | ||
| Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| gt-lth.1 | ⊢ 𝐴 ∈ V | 
| gt-lth.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| gt-lth | ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-gt 49297 | . . 3 ⊢ > = ◡ < | |
| 2 | 1 | breqi 5148 | . 2 ⊢ (𝐴 > 𝐵 ↔ 𝐴◡ < 𝐵) | 
| 3 | gt-lth.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | gt-lth.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | brcnv 5892 | . 2 ⊢ (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴) | 
| 6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 ◡ccnv 5683 < clt 11296 > cgt 49295 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-cnv 5692 df-gt 49297 | 
| This theorem is referenced by: ex-gt 49302 | 
| Copyright terms: Public domain | W3C validator |