![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gt-lth | Structured version Visualization version GIF version |
Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gt-lth.1 | ⊢ 𝐴 ∈ V |
gt-lth.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
gt-lth | ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gt 47758 | . . 3 ⊢ > = ◡ < | |
2 | 1 | breqi 5154 | . 2 ⊢ (𝐴 > 𝐵 ↔ 𝐴◡ < 𝐵) |
3 | gt-lth.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | gt-lth.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | brcnv 5882 | . 2 ⊢ (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴) |
6 | 2, 5 | bitri 274 | 1 ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 ◡ccnv 5675 < clt 11247 > cgt 47756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-cnv 5684 df-gt 47758 |
This theorem is referenced by: ex-gt 47763 |
Copyright terms: Public domain | W3C validator |