| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gt-lth | Structured version Visualization version GIF version | ||
| Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gt-lth.1 | ⊢ 𝐴 ∈ V |
| gt-lth.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| gt-lth | ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gt 49712 | . . 3 ⊢ > = ◡ < | |
| 2 | 1 | breqi 5113 | . 2 ⊢ (𝐴 > 𝐵 ↔ 𝐴◡ < 𝐵) |
| 3 | gt-lth.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | gt-lth.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | brcnv 5846 | . 2 ⊢ (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ◡ccnv 5637 < clt 11208 > cgt 49710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-gt 49712 |
| This theorem is referenced by: ex-gt 49717 |
| Copyright terms: Public domain | W3C validator |