Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gt-lth Structured version   Visualization version   GIF version

Theorem gt-lth 48020
Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
gt-lth.1 𝐴 ∈ V
gt-lth.2 𝐵 ∈ V
Assertion
Ref Expression
gt-lth (𝐴 > 𝐵𝐵 < 𝐴)

Proof of Theorem gt-lth
StepHypRef Expression
1 df-gt 48016 . . 3 > = <
21breqi 5145 . 2 (𝐴 > 𝐵𝐴 < 𝐵)
3 gt-lth.1 . . 3 𝐴 ∈ V
4 gt-lth.2 . . 3 𝐵 ∈ V
53, 4brcnv 5873 . 2 (𝐴 < 𝐵𝐵 < 𝐴)
62, 5bitri 275 1 (𝐴 > 𝐵𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  Vcvv 3466   class class class wbr 5139  ccnv 5666   < clt 11247   > cgt 48014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-cnv 5675  df-gt 48016
This theorem is referenced by:  ex-gt  48021
  Copyright terms: Public domain W3C validator