Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gt-lth | Structured version Visualization version GIF version |
Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gt-lth.1 | ⊢ 𝐴 ∈ V |
gt-lth.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
gt-lth | ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gt 46096 | . . 3 ⊢ > = ◡ < | |
2 | 1 | breqi 5059 | . 2 ⊢ (𝐴 > 𝐵 ↔ 𝐴◡ < 𝐵) |
3 | gt-lth.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | gt-lth.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | brcnv 5751 | . 2 ⊢ (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴) |
6 | 2, 5 | bitri 278 | 1 ⊢ (𝐴 > 𝐵 ↔ 𝐵 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2110 Vcvv 3408 class class class wbr 5053 ◡ccnv 5550 < clt 10867 > cgt 46094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-cnv 5559 df-gt 46096 |
This theorem is referenced by: ex-gt 46101 |
Copyright terms: Public domain | W3C validator |