MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcompl Structured version   Visualization version   GIF version

Theorem hlcompl 28842
Description: Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcompl.1 𝐷 = (IndMet‘𝑈)
hlcompl.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
hlcompl ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))

Proof of Theorem hlcompl
StepHypRef Expression
1 eqid 2738 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 hlcompl.1 . . 3 𝐷 = (IndMet‘𝑈)
31, 2hlcmet 28821 . 2 (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘(BaseSet‘𝑈)))
4 hlcompl.2 . . 3 𝐽 = (MetOpen‘𝐷)
54cmetcau 24034 . 2 ((𝐷 ∈ (CMet‘(BaseSet‘𝑈)) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))
63, 5sylan 583 1 ((𝑈 ∈ CHilOLD𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  dom cdm 5519  cfv 6333  MetOpencmopn 20200  𝑡clm 21970  Cauccau 23998  CMetccmet 23999  BaseSetcba 28513  IndMetcims 28518  CHilOLDchlo 28812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-n0 11970  df-z 12056  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ico 12820  df-rest 16792  df-topgen 16813  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-fbas 20207  df-fg 20208  df-top 21638  df-topon 21655  df-bases 21690  df-ntr 21764  df-nei 21842  df-lm 21973  df-fil 22590  df-fm 22682  df-flim 22683  df-flf 22684  df-cfil 24000  df-cau 24001  df-cmet 24002  df-cbn 28790  df-hlo 28813
This theorem is referenced by:  axhcompl-zf  28925
  Copyright terms: Public domain W3C validator