MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlvc Structured version   Visualization version   GIF version

Theorem hlvc 28321
Description: Every complex Hilbert space is a complex vector space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlvc.1 𝑊 = (1st𝑈)
Assertion
Ref Expression
hlvc (𝑈 ∈ CHilOLD𝑊 ∈ CVecOLD)

Proof of Theorem hlvc
StepHypRef Expression
1 hlnv 28319 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hlvc.1 . . 3 𝑊 = (1st𝑈)
32nvvc 28042 . 2 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
41, 3syl 17 1 (𝑈 ∈ CHilOLD𝑊 ∈ CVecOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  cfv 6135  1st c1st 7443  CVecOLDcvc 27985  NrmCVeccnv 28011  CHilOLDchlo 28313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-1st 7445  df-2nd 7446  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-nmcv 28027  df-cbn 28291  df-hlo 28314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator