![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlmet | Structured version Visualization version GIF version |
Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlcmet.x | β’ π = (BaseSetβπ) |
hlcmet.8 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
hlmet | β’ (π β CHilOLD β π· β (Metβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcmet.x | . . 3 β’ π = (BaseSetβπ) | |
2 | hlcmet.8 | . . 3 β’ π· = (IndMetβπ) | |
3 | 1, 2 | hlcmet 30134 | . 2 β’ (π β CHilOLD β π· β (CMetβπ)) |
4 | cmetmet 24794 | . 2 β’ (π· β (CMetβπ) β π· β (Metβπ)) | |
5 | 3, 4 | syl 17 | 1 β’ (π β CHilOLD β π· β (Metβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6540 Metcmet 20922 CMetccmet 24762 BaseSetcba 29826 IndMetcims 29831 CHilOLDchlo 30125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-cmet 24765 df-cbn 30103 df-hlo 30126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |