MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlmet Structured version   Visualization version   GIF version

Theorem hlmet 30877
Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSet‘𝑈)
hlcmet.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hlmet (𝑈 ∈ CHilOLD𝐷 ∈ (Met‘𝑋))

Proof of Theorem hlmet
StepHypRef Expression
1 hlcmet.x . . 3 𝑋 = (BaseSet‘𝑈)
2 hlcmet.8 . . 3 𝐷 = (IndMet‘𝑈)
31, 2hlcmet 30876 . 2 (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))
4 cmetmet 25214 . 2 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
53, 4syl 17 1 (𝑈 ∈ CHilOLD𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  Metcmet 21279  CMetccmet 25182  BaseSetcba 30568  IndMetcims 30573  CHilOLDchlo 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-cmet 25185  df-cbn 30845  df-hlo 30868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator