MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlmet Structured version   Visualization version   GIF version

Theorem hlmet 30135
Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSetβ€˜π‘ˆ)
hlcmet.8 𝐷 = (IndMetβ€˜π‘ˆ)
Assertion
Ref Expression
hlmet (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (Metβ€˜π‘‹))

Proof of Theorem hlmet
StepHypRef Expression
1 hlcmet.x . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
2 hlcmet.8 . . 3 𝐷 = (IndMetβ€˜π‘ˆ)
31, 2hlcmet 30134 . 2 (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (CMetβ€˜π‘‹))
4 cmetmet 24794 . 2 (𝐷 ∈ (CMetβ€˜π‘‹) β†’ 𝐷 ∈ (Metβ€˜π‘‹))
53, 4syl 17 1 (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (Metβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6540  Metcmet 20922  CMetccmet 24762  BaseSetcba 29826  IndMetcims 29831  CHilOLDchlo 30125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-cmet 24765  df-cbn 30103  df-hlo 30126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator