MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlmet Structured version   Visualization version   GIF version

Theorem hlmet 30718
Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSetβ€˜π‘ˆ)
hlcmet.8 𝐷 = (IndMetβ€˜π‘ˆ)
Assertion
Ref Expression
hlmet (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (Metβ€˜π‘‹))

Proof of Theorem hlmet
StepHypRef Expression
1 hlcmet.x . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
2 hlcmet.8 . . 3 𝐷 = (IndMetβ€˜π‘ˆ)
31, 2hlcmet 30717 . 2 (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (CMetβ€˜π‘‹))
4 cmetmet 25227 . 2 (𝐷 ∈ (CMetβ€˜π‘‹) β†’ 𝐷 ∈ (Metβ€˜π‘‹))
53, 4syl 17 1 (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (Metβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1534   ∈ wcel 2099  β€˜cfv 6548  Metcmet 21265  CMetccmet 25195  BaseSetcba 30409  IndMetcims 30414  CHilOLDchlo 30708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-cmet 25198  df-cbn 30686  df-hlo 30709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator