MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlmet Structured version   Visualization version   GIF version

Theorem hlmet 30927
Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSet‘𝑈)
hlcmet.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hlmet (𝑈 ∈ CHilOLD𝐷 ∈ (Met‘𝑋))

Proof of Theorem hlmet
StepHypRef Expression
1 hlcmet.x . . 3 𝑋 = (BaseSet‘𝑈)
2 hlcmet.8 . . 3 𝐷 = (IndMet‘𝑈)
31, 2hlcmet 30926 . 2 (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))
4 cmetmet 25339 . 2 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
53, 4syl 17 1 (𝑈 ∈ CHilOLD𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Metcmet 21373  CMetccmet 25307  BaseSetcba 30618  IndMetcims 30623  CHilOLDchlo 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-cmet 25310  df-cbn 30895  df-hlo 30918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator