MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbncms Structured version   Visualization version   GIF version

Theorem cbncms 30801
Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25254 (or preferably bncms 25251) instead. (New usage is discouraged.)
Hypotheses
Ref Expression
iscbn.x 𝑋 = (BaseSet‘𝑈)
iscbn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
cbncms (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cbncms
StepHypRef Expression
1 iscbn.x . . 3 𝑋 = (BaseSet‘𝑈)
2 iscbn.8 . . 3 𝐷 = (IndMet‘𝑈)
31, 2iscbn 30800 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))
43simprbi 496 1 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  CMetccmet 25161  NrmCVeccnv 30520  BaseSetcba 30522  IndMetcims 30527  CBanccbn 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-cbn 30799
This theorem is referenced by:  bnsscmcl  30804  ubthlem1  30806  ubthlem2  30807  minvecolem4a  30813  hlcmet  30830
  Copyright terms: Public domain W3C validator