MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbncms Structured version   Visualization version   GIF version

Theorem cbncms 29255
Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 24539 (or preferably bncms 24536) instead. (New usage is discouraged.)
Hypotheses
Ref Expression
iscbn.x 𝑋 = (BaseSet‘𝑈)
iscbn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
cbncms (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cbncms
StepHypRef Expression
1 iscbn.x . . 3 𝑋 = (BaseSet‘𝑈)
2 iscbn.8 . . 3 𝐷 = (IndMet‘𝑈)
31, 2iscbn 29254 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))
43simprbi 496 1 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  cfv 6447  CMetccmet 24446  NrmCVeccnv 28974  BaseSetcba 28976  IndMetcims 28981  CBanccbn 29252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-iota 6399  df-fv 6455  df-cbn 29253
This theorem is referenced by:  bnsscmcl  29258  ubthlem1  29260  ubthlem2  29261  minvecolem4a  29267  hlcmet  29284
  Copyright terms: Public domain W3C validator