| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbncms | Structured version Visualization version GIF version | ||
| Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25263 (or preferably bncms 25260) instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iscbn.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| iscbn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| cbncms | ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscbn.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | iscbn.8 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 3 | 1, 2 | iscbn 30826 | . 2 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 CMetccmet 25170 NrmCVeccnv 30546 BaseSetcba 30548 IndMetcims 30553 CBanccbn 30824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-cbn 30825 |
| This theorem is referenced by: bnsscmcl 30830 ubthlem1 30832 ubthlem2 30833 minvecolem4a 30839 hlcmet 30856 |
| Copyright terms: Public domain | W3C validator |