MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbncms Structured version   Visualization version   GIF version

Theorem cbncms 30847
Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25275 (or preferably bncms 25272) instead. (New usage is discouraged.)
Hypotheses
Ref Expression
iscbn.x 𝑋 = (BaseSet‘𝑈)
iscbn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
cbncms (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cbncms
StepHypRef Expression
1 iscbn.x . . 3 𝑋 = (BaseSet‘𝑈)
2 iscbn.8 . . 3 𝐷 = (IndMet‘𝑈)
31, 2iscbn 30846 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋)))
43simprbi 496 1 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  CMetccmet 25182  NrmCVeccnv 30566  BaseSetcba 30568  IndMetcims 30573  CBanccbn 30844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-cbn 30845
This theorem is referenced by:  bnsscmcl  30850  ubthlem1  30852  ubthlem2  30853  minvecolem4a  30859  hlcmet  30876
  Copyright terms: Public domain W3C validator