MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbncms Structured version   Visualization version   GIF version

Theorem cbncms 30551
Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25195 (or preferably bncms 25192) instead. (New usage is discouraged.)
Hypotheses
Ref Expression
iscbn.x 𝑋 = (BaseSetβ€˜π‘ˆ)
iscbn.8 𝐷 = (IndMetβ€˜π‘ˆ)
Assertion
Ref Expression
cbncms (π‘ˆ ∈ CBan β†’ 𝐷 ∈ (CMetβ€˜π‘‹))

Proof of Theorem cbncms
StepHypRef Expression
1 iscbn.x . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
2 iscbn.8 . . 3 𝐷 = (IndMetβ€˜π‘ˆ)
31, 2iscbn 30550 . 2 (π‘ˆ ∈ CBan ↔ (π‘ˆ ∈ NrmCVec ∧ 𝐷 ∈ (CMetβ€˜π‘‹)))
43simprbi 496 1 (π‘ˆ ∈ CBan β†’ 𝐷 ∈ (CMetβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  β€˜cfv 6543  CMetccmet 25102  NrmCVeccnv 30270  BaseSetcba 30272  IndMetcims 30277  CBanccbn 30548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-cbn 30549
This theorem is referenced by:  bnsscmcl  30554  ubthlem1  30556  ubthlem2  30557  minvecolem4a  30563  hlcmet  30580
  Copyright terms: Public domain W3C validator