![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbncms | Structured version Visualization version GIF version |
Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25195 (or preferably bncms 25192) instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
iscbn.x | β’ π = (BaseSetβπ) |
iscbn.8 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
cbncms | β’ (π β CBan β π· β (CMetβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscbn.x | . . 3 β’ π = (BaseSetβπ) | |
2 | iscbn.8 | . . 3 β’ π· = (IndMetβπ) | |
3 | 1, 2 | iscbn 30550 | . 2 β’ (π β CBan β (π β NrmCVec β§ π· β (CMetβπ))) |
4 | 3 | simprbi 496 | 1 β’ (π β CBan β π· β (CMetβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βcfv 6543 CMetccmet 25102 NrmCVeccnv 30270 BaseSetcba 30272 IndMetcims 30277 CBanccbn 30548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-cbn 30549 |
This theorem is referenced by: bnsscmcl 30554 ubthlem1 30556 ubthlem2 30557 minvecolem4a 30563 hlcmet 30580 |
Copyright terms: Public domain | W3C validator |