| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbncms | Structured version Visualization version GIF version | ||
| Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25275 (or preferably bncms 25272) instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| iscbn.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| iscbn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| cbncms | ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscbn.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | iscbn.8 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 3 | 1, 2 | iscbn 30846 | . 2 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 CMetccmet 25182 NrmCVeccnv 30566 BaseSetcba 30568 IndMetcims 30573 CBanccbn 30844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-cbn 30845 |
| This theorem is referenced by: bnsscmcl 30850 ubthlem1 30852 ubthlem2 30853 minvecolem4a 30859 hlcmet 30876 |
| Copyright terms: Public domain | W3C validator |