Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbncms | Structured version Visualization version GIF version |
Description: The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 24539 (or preferably bncms 24536) instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
iscbn.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
iscbn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
cbncms | ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscbn.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | iscbn.8 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
3 | 1, 2 | iscbn 29254 | . 2 ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) |
4 | 3 | simprbi 496 | 1 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ‘cfv 6447 CMetccmet 24446 NrmCVeccnv 28974 BaseSetcba 28976 IndMetcims 28981 CBanccbn 29252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-iota 6399 df-fv 6455 df-cbn 29253 |
This theorem is referenced by: bnsscmcl 29258 ubthlem1 29260 ubthlem2 29261 minvecolem4a 29267 hlcmet 29284 |
Copyright terms: Public domain | W3C validator |