| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi1d 1442 3anbi2d 1443 f1dom3el3dif 7244 xpord2pred 8124 fseq1m1p1 13560 dfrtrcl2 15028 imasdsval 17478 iscatd2 17642 ispos 18275 psgnunilem1 19423 rngpropd 20083 ringpropd 20197 mdetunilem3 22501 mdetunilem9 22507 dvfsumlem2 25933 dvfsumlem2OLD 25934 istrkge 28384 axtg5seg 28392 axtgeucl 28399 iscgrad 28738 axlowdim 28888 axeuclid 28890 eengtrkge 28914 umgrvad2edg 29140 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 lt2addrd 32674 xlt2addrd 32682 constrsuc 33728 constrconj 33735 constrcccllem 33744 constrcbvlem 33745 sigaval 34101 issgon 34113 brafs 34663 loop1cycl 35124 brofs 35993 funtransport 36019 fvtransport 36020 brifs 36031 ifscgr 36032 brcgr3 36034 cgr3permute3 36035 brfs 36067 btwnconn1lem11 36085 funray 36128 fvray 36129 funline 36130 fvline 36132 lpolsetN 41476 rmydioph 43003 tfsconcatrev 43337 iunrelexpmin2 43701 fundcmpsurinj 47410 ichexmpl1 47470 cycl3grtri 47946 grimgrtri 47948 usgrgrtrirex 47949 isubgr3stgrlem4 47968 grlimgrtri 47995 iscnrm3r 48936 iscnrm3l 48939 |
| Copyright terms: Public domain | W3C validator |