| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi1d 1442 3anbi2d 1443 f1dom3el3dif 7226 xpord2pred 8101 fseq1m1p1 13536 dfrtrcl2 15004 imasdsval 17454 iscatd2 17618 ispos 18251 psgnunilem1 19399 rngpropd 20059 ringpropd 20173 mdetunilem3 22477 mdetunilem9 22483 dvfsumlem2 25909 dvfsumlem2OLD 25910 istrkge 28360 axtg5seg 28368 axtgeucl 28375 iscgrad 28714 axlowdim 28864 axeuclid 28866 eengtrkge 28890 umgrvad2edg 29116 upgr3v3e3cycl 30082 upgr4cycl4dv4e 30087 lt2addrd 32647 xlt2addrd 32655 constrsuc 33701 constrconj 33708 constrcccllem 33717 constrcbvlem 33718 sigaval 34074 issgon 34086 brafs 34636 loop1cycl 35097 brofs 35966 funtransport 35992 fvtransport 35993 brifs 36004 ifscgr 36005 brcgr3 36007 cgr3permute3 36008 brfs 36040 btwnconn1lem11 36058 funray 36101 fvray 36102 funline 36103 fvline 36105 lpolsetN 41449 rmydioph 42976 tfsconcatrev 43310 iunrelexpmin2 43674 fundcmpsurinj 47383 ichexmpl1 47443 cycl3grtri 47919 grimgrtri 47921 usgrgrtrirex 47922 isubgr3stgrlem4 47941 grlimgrtri 47968 iscnrm3r 48909 iscnrm3l 48912 |
| Copyright terms: Public domain | W3C validator |