Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 265 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1434 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1087 |
This theorem is referenced by: 3anbi1d 1438 3anbi2d 1439 f1dom3el3dif 7026 fseq1m1p1 13045 dfrtrcl2 14483 imasdsval 16861 iscatd2 17025 ispos 17638 psgnunilem1 18703 ringpropd 19418 mdetunilem3 21329 mdetunilem9 21335 dvfsumlem2 24741 istrkge 26365 axtg5seg 26373 axtgeucl 26380 iscgrad 26719 axlowdim 26869 axeuclid 26871 eengtrkge 26895 umgrvad2edg 27117 upgr3v3e3cycl 28079 upgr4cycl4dv4e 28084 lt2addrd 30612 xlt2addrd 30619 sigaval 31612 issgon 31624 brafs 32185 loop1cycl 32629 xpord2pred 33361 brofs 33892 funtransport 33918 fvtransport 33919 brifs 33930 ifscgr 33931 brcgr3 33933 cgr3permute3 33934 brfs 33966 btwnconn1lem11 33984 funray 34027 fvray 34028 funline 34029 fvline 34031 lpolsetN 39094 rmydioph 40374 iunrelexpmin2 40832 fundcmpsurinj 44354 ichexmpl1 44414 iscnrm3r 45694 iscnrm3l 45697 |
Copyright terms: Public domain | W3C validator |