| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi1d 1442 3anbi2d 1443 f1dom3el3dif 7247 xpord2pred 8127 fseq1m1p1 13567 dfrtrcl2 15035 imasdsval 17485 iscatd2 17649 ispos 18282 psgnunilem1 19430 rngpropd 20090 ringpropd 20204 mdetunilem3 22508 mdetunilem9 22514 dvfsumlem2 25940 dvfsumlem2OLD 25941 istrkge 28391 axtg5seg 28399 axtgeucl 28406 iscgrad 28745 axlowdim 28895 axeuclid 28897 eengtrkge 28921 umgrvad2edg 29147 upgr3v3e3cycl 30116 upgr4cycl4dv4e 30121 lt2addrd 32681 xlt2addrd 32689 constrsuc 33735 constrconj 33742 constrcccllem 33751 constrcbvlem 33752 sigaval 34108 issgon 34120 brafs 34670 loop1cycl 35131 brofs 36000 funtransport 36026 fvtransport 36027 brifs 36038 ifscgr 36039 brcgr3 36041 cgr3permute3 36042 brfs 36074 btwnconn1lem11 36092 funray 36135 fvray 36136 funline 36137 fvline 36139 lpolsetN 41483 rmydioph 43010 tfsconcatrev 43344 iunrelexpmin2 43708 fundcmpsurinj 47414 ichexmpl1 47474 cycl3grtri 47950 grimgrtri 47952 usgrgrtrirex 47953 isubgr3stgrlem4 47972 grlimgrtri 47999 iscnrm3r 48940 iscnrm3l 48943 |
| Copyright terms: Public domain | W3C validator |