![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1436 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anbi1d 1440 3anbi2d 1441 f1dom3el3dif 7306 xpord2pred 8186 fseq1m1p1 13659 dfrtrcl2 15111 imasdsval 17575 iscatd2 17739 ispos 18384 psgnunilem1 19535 rngpropd 20201 ringpropd 20311 mdetunilem3 22641 mdetunilem9 22647 dvfsumlem2 26087 dvfsumlem2OLD 26088 istrkge 28483 axtg5seg 28491 axtgeucl 28498 iscgrad 28837 axlowdim 28994 axeuclid 28996 eengtrkge 29020 umgrvad2edg 29248 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 lt2addrd 32758 xlt2addrd 32765 constrsuc 33728 constrconj 33735 sigaval 34075 issgon 34087 brafs 34649 loop1cycl 35105 brofs 35969 funtransport 35995 fvtransport 35996 brifs 36007 ifscgr 36008 brcgr3 36010 cgr3permute3 36011 brfs 36043 btwnconn1lem11 36061 funray 36104 fvray 36105 funline 36106 fvline 36108 lpolsetN 41439 rmydioph 42971 tfsconcatrev 43310 iunrelexpmin2 43674 fundcmpsurinj 47283 ichexmpl1 47343 grimgrtri 47798 usgrgrtrirex 47799 grlimgrtri 47820 iscnrm3r 48628 iscnrm3l 48631 |
Copyright terms: Public domain | W3C validator |