| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi1d 1442 3anbi2d 1443 f1dom3el3dif 7206 xpord2pred 8078 fseq1m1p1 13502 dfrtrcl2 14969 imasdsval 17419 iscatd2 17587 ispos 18220 psgnunilem1 19372 rngpropd 20059 ringpropd 20173 mdetunilem3 22499 mdetunilem9 22505 dvfsumlem2 25931 dvfsumlem2OLD 25932 istrkge 28402 axtg5seg 28410 axtgeucl 28417 iscgrad 28756 axlowdim 28906 axeuclid 28908 eengtrkge 28932 umgrvad2edg 29158 upgr3v3e3cycl 30124 upgr4cycl4dv4e 30129 lt2addrd 32694 xlt2addrd 32702 constrsuc 33705 constrconj 33712 constrcccllem 33721 constrcbvlem 33722 sigaval 34078 issgon 34090 brafs 34640 loop1cycl 35110 brofs 35979 funtransport 36005 fvtransport 36006 brifs 36017 ifscgr 36018 brcgr3 36020 cgr3permute3 36021 brfs 36053 btwnconn1lem11 36071 funray 36114 fvray 36115 funline 36116 fvline 36118 lpolsetN 41461 rmydioph 42987 tfsconcatrev 43321 iunrelexpmin2 43685 fundcmpsurinj 47393 ichexmpl1 47453 cycl3grtri 47931 grimgrtri 47933 usgrgrtrirex 47934 isubgr3stgrlem4 47953 grlimgrtri 47987 iscnrm3r 48932 iscnrm3l 48935 |
| Copyright terms: Public domain | W3C validator |