![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 261 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1434 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: 3anbi1d 1438 3anbi2d 1439 f1dom3el3dif 7270 xpord2pred 8133 fseq1m1p1 13580 dfrtrcl2 15013 imasdsval 17465 iscatd2 17629 ispos 18271 psgnunilem1 19402 rngpropd 20068 ringpropd 20176 mdetunilem3 22336 mdetunilem9 22342 dvfsumlem2 25779 istrkge 27975 axtg5seg 27983 axtgeucl 27990 iscgrad 28329 axlowdim 28486 axeuclid 28488 eengtrkge 28512 umgrvad2edg 28737 upgr3v3e3cycl 29700 upgr4cycl4dv4e 29705 lt2addrd 32231 xlt2addrd 32238 sigaval 33407 issgon 33419 brafs 33982 loop1cycl 34426 brofs 35281 funtransport 35307 fvtransport 35308 brifs 35319 ifscgr 35320 brcgr3 35322 cgr3permute3 35323 brfs 35355 btwnconn1lem11 35373 funray 35416 fvray 35417 funline 35418 fvline 35420 gg-dvfsumlem2 35469 lpolsetN 40656 rmydioph 42055 tfsconcatrev 42400 iunrelexpmin2 42765 fundcmpsurinj 46375 ichexmpl1 46435 iscnrm3r 47668 iscnrm3l 47671 |
Copyright terms: Public domain | W3C validator |