![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1435 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anbi1d 1439 3anbi2d 1440 f1dom3el3dif 7271 xpord2pred 8135 fseq1m1p1 13581 dfrtrcl2 15014 imasdsval 17466 iscatd2 17630 ispos 18272 psgnunilem1 19403 rngpropd 20069 ringpropd 20177 mdetunilem3 22337 mdetunilem9 22343 dvfsumlem2 25780 istrkge 27976 axtg5seg 27984 axtgeucl 27991 iscgrad 28330 axlowdim 28487 axeuclid 28489 eengtrkge 28513 umgrvad2edg 28738 upgr3v3e3cycl 29701 upgr4cycl4dv4e 29706 lt2addrd 32232 xlt2addrd 32239 sigaval 33408 issgon 33420 brafs 33983 loop1cycl 34427 brofs 35282 funtransport 35308 fvtransport 35309 brifs 35320 ifscgr 35321 brcgr3 35323 cgr3permute3 35324 brfs 35356 btwnconn1lem11 35374 funray 35417 fvray 35418 funline 35419 fvline 35421 gg-dvfsumlem2 35470 lpolsetN 40657 rmydioph 42056 tfsconcatrev 42401 iunrelexpmin2 42766 fundcmpsurinj 46376 ichexmpl1 46436 iscnrm3r 47669 iscnrm3l 47672 |
Copyright terms: Public domain | W3C validator |