Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 261 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1435 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3anbi1d 1439 3anbi2d 1440 f1dom3el3dif 7151 fseq1m1p1 13340 dfrtrcl2 14782 imasdsval 17235 iscatd2 17399 ispos 18041 psgnunilem1 19110 ringpropd 19830 mdetunilem3 21772 mdetunilem9 21778 dvfsumlem2 25200 istrkge 26827 axtg5seg 26835 axtgeucl 26842 iscgrad 27181 axlowdim 27338 axeuclid 27340 eengtrkge 27364 umgrvad2edg 27589 upgr3v3e3cycl 28553 upgr4cycl4dv4e 28558 lt2addrd 31083 xlt2addrd 31090 sigaval 32088 issgon 32100 brafs 32661 loop1cycl 33108 xpord2pred 33801 brofs 34316 funtransport 34342 fvtransport 34343 brifs 34354 ifscgr 34355 brcgr3 34357 cgr3permute3 34358 brfs 34390 btwnconn1lem11 34408 funray 34451 fvray 34452 funline 34453 fvline 34455 lpolsetN 39503 rmydioph 40843 iunrelexpmin2 41327 fundcmpsurinj 44872 ichexmpl1 44932 iscnrm3r 46253 iscnrm3l 46256 |
Copyright terms: Public domain | W3C validator |