Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 261 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1434 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anbi1d 1438 3anbi2d 1439 f1dom3el3dif 7123 fseq1m1p1 13260 dfrtrcl2 14701 imasdsval 17143 iscatd2 17307 ispos 17947 psgnunilem1 19016 ringpropd 19736 mdetunilem3 21671 mdetunilem9 21677 dvfsumlem2 25096 istrkge 26722 axtg5seg 26730 axtgeucl 26737 iscgrad 27076 axlowdim 27232 axeuclid 27234 eengtrkge 27258 umgrvad2edg 27483 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 lt2addrd 30976 xlt2addrd 30983 sigaval 31979 issgon 31991 brafs 32552 loop1cycl 32999 xpord2pred 33719 brofs 34234 funtransport 34260 fvtransport 34261 brifs 34272 ifscgr 34273 brcgr3 34275 cgr3permute3 34276 brfs 34308 btwnconn1lem11 34326 funray 34369 fvray 34370 funline 34371 fvline 34373 lpolsetN 39423 rmydioph 40752 iunrelexpmin2 41209 fundcmpsurinj 44749 ichexmpl1 44809 iscnrm3r 46130 iscnrm3l 46133 |
Copyright terms: Public domain | W3C validator |