| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi1d 1442 3anbi2d 1443 f1dom3el3dif 7198 xpord2pred 8070 fseq1m1p1 13494 dfrtrcl2 14964 imasdsval 17414 iscatd2 17582 ispos 18215 psgnunilem1 19400 rngpropd 20087 ringpropd 20201 mdetunilem3 22524 mdetunilem9 22530 dvfsumlem2 25955 dvfsumlem2OLD 25956 istrkge 28430 axtg5seg 28438 axtgeucl 28445 iscgrad 28784 axlowdim 28934 axeuclid 28936 eengtrkge 28960 umgrvad2edg 29186 upgr3v3e3cycl 30152 upgr4cycl4dv4e 30157 lt2addrd 32726 xlt2addrd 32734 constrsuc 33743 constrconj 33750 constrcccllem 33759 constrcbvlem 33760 sigaval 34116 issgon 34128 brafs 34677 loop1cycl 35173 brofs 36039 funtransport 36065 fvtransport 36066 brifs 36077 ifscgr 36078 brcgr3 36080 cgr3permute3 36081 brfs 36113 btwnconn1lem11 36131 funray 36174 fvray 36175 funline 36176 fvline 36178 lpolsetN 41521 rmydioph 43047 tfsconcatrev 43381 iunrelexpmin2 43745 fundcmpsurinj 47440 ichexmpl1 47500 cycl3grtri 47978 grimgrtri 47980 usgrgrtrirex 47981 isubgr3stgrlem4 48000 grlimgrtri 48034 iscnrm3r 48979 iscnrm3l 48982 |
| Copyright terms: Public domain | W3C validator |