![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1435 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anbi1d 1439 3anbi2d 1440 f1dom3el3dif 7289 xpord2pred 8169 fseq1m1p1 13636 dfrtrcl2 15098 imasdsval 17562 iscatd2 17726 ispos 18372 psgnunilem1 19526 rngpropd 20192 ringpropd 20302 mdetunilem3 22636 mdetunilem9 22642 dvfsumlem2 26082 dvfsumlem2OLD 26083 istrkge 28480 axtg5seg 28488 axtgeucl 28495 iscgrad 28834 axlowdim 28991 axeuclid 28993 eengtrkge 29017 umgrvad2edg 29245 upgr3v3e3cycl 30209 upgr4cycl4dv4e 30214 lt2addrd 32762 xlt2addrd 32769 constrsuc 33743 constrconj 33750 sigaval 34092 issgon 34104 brafs 34666 loop1cycl 35122 brofs 35987 funtransport 36013 fvtransport 36014 brifs 36025 ifscgr 36026 brcgr3 36028 cgr3permute3 36029 brfs 36061 btwnconn1lem11 36079 funray 36122 fvray 36123 funline 36124 fvline 36126 lpolsetN 41465 rmydioph 43003 tfsconcatrev 43338 iunrelexpmin2 43702 fundcmpsurinj 47334 ichexmpl1 47394 grimgrtri 47852 usgrgrtrirex 47853 isubgr3stgrlem4 47872 grlimgrtri 47899 iscnrm3r 48745 iscnrm3l 48748 |
Copyright terms: Public domain | W3C validator |