| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | biidd 262 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anbi1d 1442 3anbi2d 1443 f1dom3el3dif 7262 xpord2pred 8144 fseq1m1p1 13616 dfrtrcl2 15081 imasdsval 17529 iscatd2 17693 ispos 18326 psgnunilem1 19474 rngpropd 20134 ringpropd 20248 mdetunilem3 22552 mdetunilem9 22558 dvfsumlem2 25985 dvfsumlem2OLD 25986 istrkge 28436 axtg5seg 28444 axtgeucl 28451 iscgrad 28790 axlowdim 28940 axeuclid 28942 eengtrkge 28966 umgrvad2edg 29192 upgr3v3e3cycl 30161 upgr4cycl4dv4e 30166 lt2addrd 32728 xlt2addrd 32736 constrsuc 33772 constrconj 33779 constrcccllem 33788 constrcbvlem 33789 sigaval 34142 issgon 34154 brafs 34704 loop1cycl 35159 brofs 36023 funtransport 36049 fvtransport 36050 brifs 36061 ifscgr 36062 brcgr3 36064 cgr3permute3 36065 brfs 36097 btwnconn1lem11 36115 funray 36158 fvray 36159 funline 36160 fvline 36162 lpolsetN 41501 rmydioph 43038 tfsconcatrev 43372 iunrelexpmin2 43736 fundcmpsurinj 47423 ichexmpl1 47483 cycl3grtri 47959 grimgrtri 47961 usgrgrtrirex 47962 isubgr3stgrlem4 47981 grlimgrtri 48008 iscnrm3r 48922 iscnrm3l 48925 |
| Copyright terms: Public domain | W3C validator |