MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anbi12d Structured version   Visualization version   GIF version

Theorem 3anbi12d 1439
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
Hypotheses
Ref Expression
3anbi12d.1 (𝜑 → (𝜓𝜒))
3anbi12d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3anbi12d (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜂)))

Proof of Theorem 3anbi12d
StepHypRef Expression
1 3anbi12d.1 . 2 (𝜑 → (𝜓𝜒))
2 3anbi12d.2 . 2 (𝜑 → (𝜃𝜏))
3 biidd 262 . 2 (𝜑 → (𝜂𝜂))
41, 2, 33anbi123d 1438 1 (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anbi1d  1442  3anbi2d  1443  f1dom3el3dif  7244  xpord2pred  8124  fseq1m1p1  13560  dfrtrcl2  15028  imasdsval  17478  iscatd2  17642  ispos  18275  psgnunilem1  19423  rngpropd  20083  ringpropd  20197  mdetunilem3  22501  mdetunilem9  22507  dvfsumlem2  25933  dvfsumlem2OLD  25934  istrkge  28384  axtg5seg  28392  axtgeucl  28399  iscgrad  28738  axlowdim  28888  axeuclid  28890  eengtrkge  28914  umgrvad2edg  29140  upgr3v3e3cycl  30109  upgr4cycl4dv4e  30114  lt2addrd  32674  xlt2addrd  32682  constrsuc  33728  constrconj  33735  constrcccllem  33744  constrcbvlem  33745  sigaval  34101  issgon  34113  brafs  34663  loop1cycl  35124  brofs  35993  funtransport  36019  fvtransport  36020  brifs  36031  ifscgr  36032  brcgr3  36034  cgr3permute3  36035  brfs  36067  btwnconn1lem11  36085  funray  36128  fvray  36129  funline  36130  fvline  36132  lpolsetN  41476  rmydioph  43003  tfsconcatrev  43337  iunrelexpmin2  43701  fundcmpsurinj  47410  ichexmpl1  47470  cycl3grtri  47946  grimgrtri  47948  usgrgrtrirex  47949  isubgr3stgrlem4  47968  grlimgrtri  47995  iscnrm3r  48936  iscnrm3l  48939
  Copyright terms: Public domain W3C validator