MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcom Structured version   Visualization version   GIF version

Theorem gcdcom 16483
Description: The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdcom ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))

Proof of Theorem gcdcom
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . 3 ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑁 = 0 ∧ 𝑀 = 0))
2 ancom 460 . . . . 5 ((𝑛𝑀𝑛𝑁) ↔ (𝑛𝑁𝑛𝑀))
32rabbii 3411 . . . 4 {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)} = {𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}
43supeq1i 9398 . . 3 sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < )
51, 4ifbieq2i 4514 . 2 if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < ))
6 gcdval 16466 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
7 gcdval 16466 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < )))
87ancoms 458 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 gcd 𝑀) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < )))
95, 6, 83eqtr4a 2790 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  ifcif 4488   class class class wbr 5107  (class class class)co 7387  supcsup 9391  cr 11067  0cc0 11068   < clt 11208  cz 12529  cdvds 16222   gcd cgcd 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-gcd 16465
This theorem is referenced by:  gcdcomd  16484  divgcdnnr  16486  gcdid0  16490  neggcd  16493  gcdabs2  16500  1gcd  16503  6gcd4e2  16508  rprpwr  16529  eucalginv  16554  3lcm2e6woprm  16585  coprmdvds  16623  qredeq  16627  divgcdcoprmex  16636  cncongr1  16637  cncongrprm  16699  fermltl  16754  vfermltl  16772  coprimeprodsq2  16780  pythagtrip  16805  pcgcd  16849  pockthlem  16876  gcdi  17044  gcdmodi  17045  1259lem5  17105  2503lem3  17109  4001lem4  17114  odinv  19491  lgsprme0  27250  lgsdirnn0  27255  lgsquad2lem2  27296  lgsquad3  27298  ex-gcd  30386  gcd32  35736  gcdcomnni  41976  aks6d1c1  42104  aks6d1c4  42112  goldbachthlem2  47547  goldbachth  47548  gcd2odd1  47669  fpprwpprb  47741
  Copyright terms: Public domain W3C validator