MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcom Structured version   Visualization version   GIF version

Theorem gcdcom 16453
Description: The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdcom ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))

Proof of Theorem gcdcom
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ancom 461 . . 3 ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑁 = 0 ∧ 𝑀 = 0))
2 ancom 461 . . . . 5 ((𝑛𝑀𝑛𝑁) ↔ (𝑛𝑁𝑛𝑀))
32rabbii 3438 . . . 4 {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)} = {𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}
43supeq1i 9441 . . 3 sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < )
51, 4ifbieq2i 4553 . 2 if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < ))
6 gcdval 16436 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
7 gcdval 16436 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < )))
87ancoms 459 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 gcd 𝑀) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑁𝑛𝑀)}, ℝ, < )))
95, 6, 83eqtr4a 2798 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  ifcif 4528   class class class wbr 5148  (class class class)co 7408  supcsup 9434  cr 11108  0cc0 11109   < clt 11247  cz 12557  cdvds 16196   gcd cgcd 16434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-i2m1 11177  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-gcd 16435
This theorem is referenced by:  gcdcomd  16454  divgcdnnr  16456  gcdid0  16460  neggcd  16463  gcdabs2  16470  1gcd  16474  6gcd4e2  16479  rprpwr  16499  eucalginv  16520  3lcm2e6woprm  16551  coprmdvds  16589  qredeq  16593  divgcdcoprmex  16602  cncongr1  16603  cncongrprm  16664  fermltl  16716  vfermltl  16733  coprimeprodsq2  16741  pythagtrip  16766  pcgcd  16810  pockthlem  16837  gcdi  17005  gcdmodi  17006  1259lem5  17067  2503lem3  17071  4001lem4  17076  odinv  19428  lgsprme0  26839  lgsdirnn0  26844  lgsquad2lem2  26885  lgsquad3  26887  ex-gcd  29707  gcd32  34714  gcdcomnni  40849  goldbachthlem2  46204  goldbachth  46205  gcd2odd1  46326  fpprwpprb  46398
  Copyright terms: Public domain W3C validator