![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdcom | Structured version Visualization version GIF version |
Description: The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
gcdcom | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑁 = 0 ∧ 𝑀 = 0)) | |
2 | ancom 460 | . . . . 5 ⊢ ((𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁) ↔ (𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀)) | |
3 | 2 | rabbii 3449 | . . . 4 ⊢ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} = {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀)} |
4 | 3 | supeq1i 9516 | . . 3 ⊢ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀)}, ℝ, < ) |
5 | 1, 4 | ifbieq2i 4573 | . 2 ⊢ if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀)}, ℝ, < )) |
6 | gcdval 16542 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) | |
7 | gcdval 16542 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀)}, ℝ, < ))) | |
8 | 7 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 gcd 𝑀) = if((𝑁 = 0 ∧ 𝑀 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀)}, ℝ, < ))) |
9 | 5, 6, 8 | 3eqtr4a 2806 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ifcif 4548 class class class wbr 5166 (class class class)co 7448 supcsup 9509 ℝcr 11183 0cc0 11184 < clt 11324 ℤcz 12639 ∥ cdvds 16302 gcd cgcd 16540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-gcd 16541 |
This theorem is referenced by: gcdcomd 16560 divgcdnnr 16562 gcdid0 16566 neggcd 16569 gcdabs2 16576 1gcd 16580 6gcd4e2 16585 rprpwr 16606 eucalginv 16631 3lcm2e6woprm 16662 coprmdvds 16700 qredeq 16704 divgcdcoprmex 16713 cncongr1 16714 cncongrprm 16776 fermltl 16831 vfermltl 16848 coprimeprodsq2 16856 pythagtrip 16881 pcgcd 16925 pockthlem 16952 gcdi 17120 gcdmodi 17121 1259lem5 17182 2503lem3 17186 4001lem4 17191 odinv 19603 lgsprme0 27401 lgsdirnn0 27406 lgsquad2lem2 27447 lgsquad3 27449 ex-gcd 30489 gcd32 35711 gcdcomnni 41945 aks6d1c1 42073 aks6d1c4 42081 goldbachthlem2 47420 goldbachth 47421 gcd2odd1 47542 fpprwpprb 47614 |
Copyright terms: Public domain | W3C validator |