MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmcom Structured version   Visualization version   GIF version

Theorem lcmcom 16627
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcom ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))

Proof of Theorem lcmcom
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 orcom 870 . . 3 ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑀 = 0))
2 ancom 460 . . . . 5 ((𝑀𝑛𝑁𝑛) ↔ (𝑁𝑛𝑀𝑛))
32rabbii 3439 . . . 4 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} = {𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}
43infeq1i 9516 . . 3 inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )
51, 4ifbieq2i 4556 . 2 if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < ))
6 lcmval 16626 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
7 lcmval 16626 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
87ancoms 458 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
95, 6, 83eqtr4a 2801 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  {crab 3433  ifcif 4531   class class class wbr 5148  (class class class)co 7431  infcinf 9479  cr 11152  0cc0 11153   < clt 11293  cn 12264  cz 12611  cdvds 16287   lcm clcm 16622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-i2m1 11221  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-lcm 16624
This theorem is referenced by:  dvdslcm  16632  lcmeq0  16634  lcmcl  16635  lcmneg  16637  neglcm  16638  lcmgcd  16641  lcmdvds  16642  lcmftp  16670  lcmfunsnlem2  16674  lcmfunsnlem  16675  lcmf2a3a4e12  16681  lcm2un  41996  lcm3un  41997
  Copyright terms: Public domain W3C validator