MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmcom Structured version   Visualization version   GIF version

Theorem lcmcom 16630
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcom ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))

Proof of Theorem lcmcom
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 orcom 871 . . 3 ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑀 = 0))
2 ancom 460 . . . . 5 ((𝑀𝑛𝑁𝑛) ↔ (𝑁𝑛𝑀𝑛))
32rabbii 3442 . . . 4 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} = {𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}
43infeq1i 9518 . . 3 inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )
51, 4ifbieq2i 4551 . 2 if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < ))
6 lcmval 16629 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
7 lcmval 16629 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
87ancoms 458 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁𝑛𝑀𝑛)}, ℝ, < )))
95, 6, 83eqtr4a 2803 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  {crab 3436  ifcif 4525   class class class wbr 5143  (class class class)co 7431  infcinf 9481  cr 11154  0cc0 11155   < clt 11295  cn 12266  cz 12613  cdvds 16290   lcm clcm 16625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-mulcl 11217  ax-i2m1 11223  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-lcm 16627
This theorem is referenced by:  dvdslcm  16635  lcmeq0  16637  lcmcl  16638  lcmneg  16640  neglcm  16641  lcmgcd  16644  lcmdvds  16645  lcmftp  16673  lcmfunsnlem2  16677  lcmfunsnlem  16678  lcmf2a3a4e12  16684  lcm2un  42015  lcm3un  42016
  Copyright terms: Public domain W3C validator