![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmcom | Structured version Visualization version GIF version |
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmcom | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 868 | . . 3 ⊢ ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑀 = 0)) | |
2 | ancom 459 | . . . . 5 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)) | |
3 | 2 | rabbii 3425 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)} |
4 | 3 | infeq1i 9511 | . . 3 ⊢ inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < ) |
5 | 1, 4 | ifbieq2i 4548 | . 2 ⊢ if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < )) |
6 | lcmval 16585 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | |
7 | lcmval 16585 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < ))) | |
8 | 7 | ancoms 457 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < ))) |
9 | 5, 6, 8 | 3eqtr4a 2792 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 {crab 3419 ifcif 4523 class class class wbr 5143 (class class class)co 7413 infcinf 9474 ℝcr 11145 0cc0 11146 < clt 11286 ℕcn 12255 ℤcz 12601 ∥ cdvds 16248 lcm clcm 16581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-mulcl 11208 ax-i2m1 11214 ax-pre-lttri 11220 ax-pre-lttrn 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9475 df-inf 9476 df-pnf 11288 df-mnf 11289 df-ltxr 11291 df-lcm 16583 |
This theorem is referenced by: dvdslcm 16591 lcmeq0 16593 lcmcl 16594 lcmneg 16596 neglcm 16597 lcmgcd 16600 lcmdvds 16601 lcmftp 16629 lcmfunsnlem2 16633 lcmfunsnlem 16634 lcmf2a3a4e12 16640 lcm2un 41723 lcm3un 41724 |
Copyright terms: Public domain | W3C validator |