Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcmcom | Structured version Visualization version GIF version |
Description: The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmcom | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 869 | . . 3 ⊢ ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑀 = 0)) | |
2 | ancom 464 | . . . . 5 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)) | |
3 | 2 | rabbii 3374 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)} |
4 | 3 | infeq1i 9017 | . . 3 ⊢ inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < ) |
5 | 1, 4 | ifbieq2i 4439 | . 2 ⊢ if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < )) |
6 | lcmval 16035 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | |
7 | lcmval 16035 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < ))) | |
8 | 7 | ancoms 462 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 lcm 𝑀) = if((𝑁 = 0 ∨ 𝑀 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛)}, ℝ, < ))) |
9 | 5, 6, 8 | 3eqtr4a 2799 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 {crab 3057 ifcif 4414 class class class wbr 5030 (class class class)co 7172 infcinf 8980 ℝcr 10616 0cc0 10617 < clt 10755 ℕcn 11718 ℤcz 12064 ∥ cdvds 15701 lcm clcm 16031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-mulcl 10679 ax-i2m1 10685 ax-pre-lttri 10691 ax-pre-lttrn 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-sup 8981 df-inf 8982 df-pnf 10757 df-mnf 10758 df-ltxr 10760 df-lcm 16033 |
This theorem is referenced by: dvdslcm 16041 lcmeq0 16043 lcmcl 16044 lcmneg 16046 neglcm 16047 lcmgcd 16050 lcmdvds 16051 lcmftp 16079 lcmfunsnlem2 16083 lcmfunsnlem 16084 lcmf2a3a4e12 16090 lcm2un 39664 lcm3un 39665 |
Copyright terms: Public domain | W3C validator |