Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sdnN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleme31sdn.c | ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
cdleme31sdn.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdleme31sdn.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
Ref | Expression |
---|---|
cdleme31sdnN | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31sdn.n | . 2 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) | |
2 | biid 264 | . . 3 ⊢ (𝑠 ≤ (𝑃 ∨ 𝑄) ↔ 𝑠 ≤ (𝑃 ∨ 𝑄)) | |
3 | cdleme31sdn.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
4 | cdleme31sdn.c | . . . . 5 ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
5 | 3, 4 | cdleme31sc 38304 | . . . 4 ⊢ (𝑠 ∈ V → ⦋𝑠 / 𝑡⦌𝐷 = 𝐶) |
6 | 5 | elv 3429 | . . 3 ⊢ ⦋𝑠 / 𝑡⦌𝐷 = 𝐶 |
7 | 2, 6 | ifbieq2i 4481 | . 2 ⊢ if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
8 | 1, 7 | eqtr4i 2770 | 1 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 Vcvv 3423 ⦋csb 3829 ifcif 4456 class class class wbr 5070 (class class class)co 7252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-ov 7255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |