![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sdnN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleme31sdn.c | ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
cdleme31sdn.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdleme31sdn.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
Ref | Expression |
---|---|
cdleme31sdnN | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31sdn.n | . 2 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) | |
2 | biid 253 | . . 3 ⊢ (𝑠 ≤ (𝑃 ∨ 𝑄) ↔ 𝑠 ≤ (𝑃 ∨ 𝑄)) | |
3 | vex 3417 | . . . 4 ⊢ 𝑠 ∈ V | |
4 | cdleme31sdn.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
5 | cdleme31sdn.c | . . . . 5 ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
6 | 4, 5 | cdleme31sc 36458 | . . . 4 ⊢ (𝑠 ∈ V → ⦋𝑠 / 𝑡⦌𝐷 = 𝐶) |
7 | 3, 6 | ax-mp 5 | . . 3 ⊢ ⦋𝑠 / 𝑡⦌𝐷 = 𝐶 |
8 | 2, 7 | ifbieq2i 4332 | . 2 ⊢ if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
9 | 1, 8 | eqtr4i 2852 | 1 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 Vcvv 3414 ⦋csb 3757 ifcif 4308 class class class wbr 4875 (class class class)co 6910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-iota 6090 df-fv 6135 df-ov 6913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |