![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sdnN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleme31sdn.c | ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
cdleme31sdn.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdleme31sdn.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
Ref | Expression |
---|---|
cdleme31sdnN | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31sdn.n | . 2 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) | |
2 | biid 261 | . . 3 ⊢ (𝑠 ≤ (𝑃 ∨ 𝑄) ↔ 𝑠 ≤ (𝑃 ∨ 𝑄)) | |
3 | cdleme31sdn.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
4 | cdleme31sdn.c | . . . . 5 ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
5 | 3, 4 | cdleme31sc 39255 | . . . 4 ⊢ (𝑠 ∈ V → ⦋𝑠 / 𝑡⦌𝐷 = 𝐶) |
6 | 5 | elv 3481 | . . 3 ⊢ ⦋𝑠 / 𝑡⦌𝐷 = 𝐶 |
7 | 2, 6 | ifbieq2i 4554 | . 2 ⊢ if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
8 | 1, 7 | eqtr4i 2764 | 1 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / 𝑡⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3475 ⦋csb 3894 ifcif 4529 class class class wbr 5149 (class class class)co 7409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |