Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvlelem4 Structured version   Visualization version   GIF version

Theorem hoidmvlelem4 44829
Description: The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29, case nonempty interval and dimension of the space greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvlelem4.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvlelem4.x (𝜑𝑋 ∈ Fin)
hoidmvlelem4.y (𝜑𝑌𝑋)
hoidmvlelem4.n (𝜑𝑌 ≠ ∅)
hoidmvlelem4.z (𝜑𝑍 ∈ (𝑋𝑌))
hoidmvlelem4.w 𝑊 = (𝑌 ∪ {𝑍})
hoidmvlelem4.a (𝜑𝐴:𝑊⟶ℝ)
hoidmvlelem4.b (𝜑𝐵:𝑊⟶ℝ)
hoidmvlelem4.k ((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
hoidmvlelem4.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
hoidmvlelem4.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
hoidmvlelem4.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
hoidmvlelem4.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
hoidmvlelem4.14 𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))
hoidmvlelem4.e (𝜑𝐸 ∈ ℝ+)
hoidmvlelem4.u 𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}
hoidmvlelem4.s 𝑆 = sup(𝑈, ℝ, < )
hoidmvlelem4.i (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)∀ ∈ ((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
hoidmvlelem4.i2 (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
Assertion
Ref Expression
hoidmvlelem4 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
Distinct variable groups:   𝐴,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐴,𝑐,,𝑗,𝑘,𝑥   𝐴,𝑒,𝑓,𝑔,,𝑗,𝑘   𝑧,𝐴,,𝑗   𝐵,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐵,𝑐   𝐵,𝑓,𝑔   𝑧,𝐵   𝐶,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐶,𝑐   𝐶,𝑔   𝑧,𝐶   𝐷,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐷,𝑐   𝐷,𝑔   𝑧,𝐷   𝐸,𝑎,𝑏,,𝑘,𝑥   𝐸,𝑐   𝑧,𝐸   𝐺,𝑎,𝑏,,𝑘,𝑥   𝐺,𝑐   𝑧,𝐺   𝐻,𝑎,𝑏,𝑗,𝑘   𝐻,𝑐   𝑧,𝐻   𝐿,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐿,𝑐   𝑒,𝐿,𝑓,𝑔   𝑧,𝐿   𝑆,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑆,𝑐   𝑆,𝑔   𝑧,𝑆   𝑈,𝑎,𝑏,𝑗,𝑘,𝑥   𝑈,𝑐   𝑧,𝑈   𝑊,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑊,𝑐   𝑧,𝑊   𝑌,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑌,𝑐   𝑒,𝑌,𝑓,𝑔   𝑍,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑍,𝑐   𝑔,𝑍   𝑧,𝑍   𝜑,𝑎,𝑏,,𝑗,𝑘,𝑥   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑧,𝑒,𝑓,𝑔)   𝐵(𝑒)   𝐶(𝑒,𝑓)   𝐷(𝑒,𝑓)   𝑆(𝑒,𝑓)   𝑈(𝑒,𝑓,𝑔,)   𝐸(𝑒,𝑓,𝑔,𝑗)   𝐺(𝑒,𝑓,𝑔,𝑗)   𝐻(𝑥,𝑒,𝑓,𝑔,)   𝑊(𝑒,𝑓,𝑔)   𝑋(𝑥,𝑧,𝑒,𝑓,𝑔,,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑧)   𝑍(𝑒,𝑓)

Proof of Theorem hoidmvlelem4
Dummy variables 𝑦 𝑢 𝑖 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 13373 . . 3 (0[,)+∞) ⊆ ℝ
2 hoidmvlelem4.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
3 hoidmvlelem4.x . . . . 5 (𝜑𝑋 ∈ Fin)
4 hoidmvlelem4.w . . . . . 6 𝑊 = (𝑌 ∪ {𝑍})
5 hoidmvlelem4.y . . . . . . 7 (𝜑𝑌𝑋)
6 hoidmvlelem4.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑋𝑌))
76eldifad 3922 . . . . . . . 8 (𝜑𝑍𝑋)
8 snssi 4768 . . . . . . . 8 (𝑍𝑋 → {𝑍} ⊆ 𝑋)
97, 8syl 17 . . . . . . 7 (𝜑 → {𝑍} ⊆ 𝑋)
105, 9unssd 4146 . . . . . 6 (𝜑 → (𝑌 ∪ {𝑍}) ⊆ 𝑋)
114, 10eqsstrid 3992 . . . . 5 (𝜑𝑊𝑋)
12 ssfi 9117 . . . . 5 ((𝑋 ∈ Fin ∧ 𝑊𝑋) → 𝑊 ∈ Fin)
133, 11, 12syl2anc 584 . . . 4 (𝜑𝑊 ∈ Fin)
14 hoidmvlelem4.a . . . 4 (𝜑𝐴:𝑊⟶ℝ)
15 hoidmvlelem4.b . . . 4 (𝜑𝐵:𝑊⟶ℝ)
162, 13, 14, 15hoidmvcl 44813 . . 3 (𝜑 → (𝐴(𝐿𝑊)𝐵) ∈ (0[,)+∞))
171, 16sselid 3942 . 2 (𝜑 → (𝐴(𝐿𝑊)𝐵) ∈ ℝ)
18 1red 11156 . . . 4 (𝜑 → 1 ∈ ℝ)
19 hoidmvlelem4.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
2019rpred 12957 . . . 4 (𝜑𝐸 ∈ ℝ)
2118, 20readdcld 11184 . . 3 (𝜑 → (1 + 𝐸) ∈ ℝ)
22 nfv 1917 . . . . 5 𝑗𝜑
23 nnex 12159 . . . . . 6 ℕ ∈ V
2423a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
25 icossicc 13353 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2613adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑊 ∈ Fin)
27 hoidmvlelem4.c . . . . . . . . 9 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
2827ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑊))
29 elmapi 8787 . . . . . . . 8 ((𝐶𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶𝑗):𝑊⟶ℝ)
3028, 29syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑊⟶ℝ)
31 hoidmvlelem4.h . . . . . . . . 9 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
32 eleq1 2825 . . . . . . . . . . . . 13 (𝑗 = → (𝑗𝑌𝑌))
33 fveq2 6842 . . . . . . . . . . . . 13 (𝑗 = → (𝑐𝑗) = (𝑐))
3433breq1d 5115 . . . . . . . . . . . . . 14 (𝑗 = → ((𝑐𝑗) ≤ 𝑥 ↔ (𝑐) ≤ 𝑥))
3534, 33ifbieq1d 4510 . . . . . . . . . . . . 13 (𝑗 = → if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥) = if((𝑐) ≤ 𝑥, (𝑐), 𝑥))
3632, 33, 35ifbieq12d 4514 . . . . . . . . . . . 12 (𝑗 = → if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)) = if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
3736cbvmptv 5218 . . . . . . . . . . 11 (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))) = (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
3837mpteq2i 5210 . . . . . . . . . 10 (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥))))
3938mpteq2i 5210 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
4031, 39eqtri 2764 . . . . . . . 8 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
41 snidg 4620 . . . . . . . . . . . . 13 (𝑍 ∈ (𝑋𝑌) → 𝑍 ∈ {𝑍})
426, 41syl 17 . . . . . . . . . . . 12 (𝜑𝑍 ∈ {𝑍})
43 elun2 4137 . . . . . . . . . . . 12 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍}))
4442, 43syl 17 . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝑌 ∪ {𝑍}))
454a1i 11 . . . . . . . . . . . 12 (𝜑𝑊 = (𝑌 ∪ {𝑍}))
4645eqcomd 2742 . . . . . . . . . . 11 (𝜑 → (𝑌 ∪ {𝑍}) = 𝑊)
4744, 46eleqtrd 2840 . . . . . . . . . 10 (𝜑𝑍𝑊)
4815, 47ffvelcdmd 7036 . . . . . . . . 9 (𝜑 → (𝐵𝑍) ∈ ℝ)
4948adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑍) ∈ ℝ)
50 hoidmvlelem4.d . . . . . . . . . 10 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
5150ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑊))
52 elmapi 8787 . . . . . . . . 9 ((𝐷𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷𝑗):𝑊⟶ℝ)
5351, 52syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑊⟶ℝ)
5440, 49, 26, 53hsphoif 44807 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐻‘(𝐵𝑍))‘(𝐷𝑗)):𝑊⟶ℝ)
552, 26, 30, 54hoidmvcl 44813 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))) ∈ (0[,)+∞))
5625, 55sselid 3942 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))) ∈ (0[,]+∞))
5722, 24, 56sge0clmpt 44656 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ (0[,]+∞))
5822, 24, 56sge0xrclmpt 44659 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ ℝ*)
59 pnfxr 11209 . . . . . 6 +∞ ∈ ℝ*
6059a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
61 hoidmvlelem4.r . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
6261rexrd 11205 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
632, 26, 30, 53hoidmvcl 44813 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,)+∞))
6425, 63sselid 3942 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,]+∞))
656eldifbd 3923 . . . . . . . . . 10 (𝜑 → ¬ 𝑍𝑌)
6647, 65eldifd 3921 . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊𝑌))
6766adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊𝑌))
682, 26, 67, 4, 49, 40, 30, 53hsphoidmvle 44817 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))
6922, 24, 56, 64, 68sge0lempt 44641 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
7061ltpnfd 13042 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
7158, 62, 60, 69, 70xrlelttrd 13079 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) < +∞)
7258, 60, 71xrltned 43581 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ≠ +∞)
73 ge0xrre 43759 . . . 4 (((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ (0[,]+∞) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ≠ +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ ℝ)
7457, 72, 73syl2anc 584 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ ℝ)
7521, 74remulcld 11185 . 2 (𝜑 → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))) ∈ ℝ)
7621, 61remulcld 11185 . 2 (𝜑 → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))) ∈ ℝ)
77 hoidmvlelem4.14 . . . . . . 7 𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))
78 hoidmvlelem4.u . . . . . . 7 𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}
79 hoidmvlelem4.s . . . . . . 7 𝑆 = sup(𝑈, ℝ, < )
8047ancli 549 . . . . . . . 8 (𝜑 → (𝜑𝑍𝑊))
81 eleq1 2825 . . . . . . . . . . 11 (𝑘 = 𝑍 → (𝑘𝑊𝑍𝑊))
8281anbi2d 629 . . . . . . . . . 10 (𝑘 = 𝑍 → ((𝜑𝑘𝑊) ↔ (𝜑𝑍𝑊)))
83 fveq2 6842 . . . . . . . . . . 11 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
84 fveq2 6842 . . . . . . . . . . 11 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
8583, 84breq12d 5118 . . . . . . . . . 10 (𝑘 = 𝑍 → ((𝐴𝑘) < (𝐵𝑘) ↔ (𝐴𝑍) < (𝐵𝑍)))
8682, 85imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑍 → (((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘)) ↔ ((𝜑𝑍𝑊) → (𝐴𝑍) < (𝐵𝑍))))
87 hoidmvlelem4.k . . . . . . . . 9 ((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
8886, 87vtoclg 3525 . . . . . . . 8 (𝑍𝑊 → ((𝜑𝑍𝑊) → (𝐴𝑍) < (𝐵𝑍)))
8947, 80, 88sylc 65 . . . . . . 7 (𝜑 → (𝐴𝑍) < (𝐵𝑍))
902, 3, 5, 6, 4, 14, 15, 27, 50, 61, 31, 77, 19, 78, 79, 89hoidmvlelem1 44826 . . . . . 6 (𝜑𝑆𝑈)
9148rexrd 11205 . . . . . . . 8 (𝜑 → (𝐵𝑍) ∈ ℝ*)
92 iccssxr 13347 . . . . . . . . 9 ((𝐴𝑍)[,](𝐵𝑍)) ⊆ ℝ*
93 ssrab2 4037 . . . . . . . . . . 11 {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} ⊆ ((𝐴𝑍)[,](𝐵𝑍))
9478, 93eqsstri 3978 . . . . . . . . . 10 𝑈 ⊆ ((𝐴𝑍)[,](𝐵𝑍))
9594, 90sselid 3942 . . . . . . . . 9 (𝜑𝑆 ∈ ((𝐴𝑍)[,](𝐵𝑍)))
9692, 95sselid 3942 . . . . . . . 8 (𝜑𝑆 ∈ ℝ*)
97 simpl 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → 𝜑)
98 simpr 485 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → ¬ (𝐵𝑍) ≤ 𝑆)
9914, 47ffvelcdmd 7036 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑍) ∈ ℝ)
10099, 48iccssred 13351 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑍)[,](𝐵𝑍)) ⊆ ℝ)
101100, 95sseldd 3945 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
102101adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → 𝑆 ∈ ℝ)
10397, 48syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → (𝐵𝑍) ∈ ℝ)
104102, 103ltnled 11302 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → (𝑆 < (𝐵𝑍) ↔ ¬ (𝐵𝑍) ≤ 𝑆))
10598, 104mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → 𝑆 < (𝐵𝑍))
1063adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑋 ∈ Fin)
1075adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑌𝑋)
1086adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑍 ∈ (𝑋𝑌))
10914adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐴:𝑊⟶ℝ)
11015adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐵:𝑊⟶ℝ)
11187adantlr 713 . . . . . . . . . . 11 (((𝜑𝑆 < (𝐵𝑍)) ∧ 𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
112 eqid 2736 . . . . . . . . . . 11 (𝑦𝑌 ↦ 0) = (𝑦𝑌 ↦ 0)
11327adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐶:ℕ⟶(ℝ ↑m 𝑊))
114 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
115114fveq1d 6844 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝐶𝑖)‘𝑍) = ((𝐶𝑗)‘𝑍))
116 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
117116fveq1d 6844 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝐷𝑖)‘𝑍) = ((𝐷𝑗)‘𝑍))
118115, 117oveq12d 7375 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
119118eleq2d 2823 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
120114reseq1d 5936 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐶𝑖) ↾ 𝑌) = ((𝐶𝑗) ↾ 𝑌))
121119, 120ifbieq1d 4510 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐶𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
122121cbvmptv 5218 . . . . . . . . . . 11 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐶𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
12350adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐷:ℕ⟶(ℝ ↑m 𝑊))
124116reseq1d 5936 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐷𝑖) ↾ 𝑌) = ((𝐷𝑗) ↾ 𝑌))
125119, 124ifbieq1d 4510 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐷𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
126125cbvmptv 5218 . . . . . . . . . . 11 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐷𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
12761adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
12819adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐸 ∈ ℝ+)
12990adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑆𝑈)
130 simpr 485 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑆 < (𝐵𝑍))
131 biid 260 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)))
132 eqidd 2737 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑦 → 0 = 0)
133132cbvmptv 5218 . . . . . . . . . . . . . . . . 17 (𝑤𝑌 ↦ 0) = (𝑦𝑌 ↦ 0)
134131, 133ifbieq2i 4511 . . . . . . . . . . . . . . . 16 if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))
135134mpteq2i 5210 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
136135a1i 11 . . . . . . . . . . . . . 14 (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))))
137 id 22 . . . . . . . . . . . . . 14 (𝑙 = 𝑗𝑙 = 𝑗)
138136, 137fveq12d 6849 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗))
139131, 133ifbieq2i 4511 . . . . . . . . . . . . . . . 16 if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))
140139mpteq2i 5210 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
141140a1i 11 . . . . . . . . . . . . . 14 (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))))
142141, 137fveq12d 6849 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗))
143138, 142oveq12d 7375 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙)) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)))
144143cbvmptv 5218 . . . . . . . . . . 11 (𝑙 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙))) = (𝑗 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)))
145 hoidmvlelem4.i . . . . . . . . . . . 12 (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)∀ ∈ ((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
146145adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)∀ ∈ ((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
147 hoidmvlelem4.i2 . . . . . . . . . . . 12 (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
148147adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
149 eqid 2736 . . . . . . . . . . . 12 (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆))) = (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆)))
150 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝐴𝑦) = (𝐴𝑘))
151 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝐵𝑦) = (𝐵𝑘))
152150, 151oveq12d 7375 . . . . . . . . . . . . . 14 (𝑦 = 𝑘 → ((𝐴𝑦)[,)(𝐵𝑦)) = ((𝐴𝑘)[,)(𝐵𝑘)))
153152cbvixpv 8853 . . . . . . . . . . . . 13 X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) = X𝑘𝑌 ((𝐴𝑘)[,)(𝐵𝑘))
154 eleq1 2825 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝑦𝑌𝑘𝑌))
155 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝑥𝑦) = (𝑥𝑘))
156154, 155ifbieq1d 4510 . . . . . . . . . . . . . 14 (𝑦 = 𝑘 → if(𝑦𝑌, (𝑥𝑦), 𝑆) = if(𝑘𝑌, (𝑥𝑘), 𝑆))
157156cbvmptv 5218 . . . . . . . . . . . . 13 (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆)) = (𝑘𝑊 ↦ if(𝑘𝑌, (𝑥𝑘), 𝑆))
158153, 157mpteq12i 5211 . . . . . . . . . . . 12 (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆))) = (𝑥X𝑘𝑌 ((𝐴𝑘)[,)(𝐵𝑘)) ↦ (𝑘𝑊 ↦ if(𝑘𝑌, (𝑥𝑘), 𝑆)))
159149, 158eqtri 2764 . . . . . . . . . . 11 (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆))) = (𝑥X𝑘𝑌 ((𝐴𝑘)[,)(𝐵𝑘)) ↦ (𝑘𝑊 ↦ if(𝑘𝑌, (𝑥𝑘), 𝑆)))
1602, 106, 107, 108, 4, 109, 110, 111, 112, 113, 122, 123, 126, 127, 31, 77, 128, 78, 129, 130, 144, 146, 148, 159hoidmvlelem3 44828 . . . . . . . . . 10 ((𝜑𝑆 < (𝐵𝑍)) → ∃𝑢𝑈 𝑆 < 𝑢)
16197, 105, 160syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → ∃𝑢𝑈 𝑆 < 𝑢)
16294a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ⊆ ((𝐴𝑍)[,](𝐵𝑍)))
163162, 100sstrd 3954 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ⊆ ℝ)
164163adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ⊆ ℝ)
165 ne0i 4294 . . . . . . . . . . . . . . . . 17 (𝑢𝑈𝑈 ≠ ∅)
166165adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ≠ ∅)
16799rexrd 11205 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴𝑍) ∈ ℝ*)
168167adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑈) → (𝐴𝑍) ∈ ℝ*)
16991adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑈) → (𝐵𝑍) ∈ ℝ*)
170162sselda 3944 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑈) → 𝑢 ∈ ((𝐴𝑍)[,](𝐵𝑍)))
171 iccleub 13319 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑍) ∈ ℝ* ∧ (𝐵𝑍) ∈ ℝ*𝑢 ∈ ((𝐴𝑍)[,](𝐵𝑍))) → 𝑢 ≤ (𝐵𝑍))
172168, 169, 170, 171syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑈) → 𝑢 ≤ (𝐵𝑍))
173172ralrimiva 3143 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑢𝑈 𝑢 ≤ (𝐵𝑍))
174 brralrspcev 5165 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑍) ∈ ℝ ∧ ∀𝑢𝑈 𝑢 ≤ (𝐵𝑍)) → ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦)
17548, 173, 174syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦)
176175adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦)
177 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑢𝑈)
178 suprub 12116 . . . . . . . . . . . . . . . 16 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦) ∧ 𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
179164, 166, 176, 177, 178syl31anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
180179, 79breqtrrdi 5147 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢𝑆)
181180ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑢𝑈 𝑢𝑆)
182164, 177sseldd 3945 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → 𝑢 ∈ ℝ)
183101adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → 𝑆 ∈ ℝ)
184182, 183lenltd 11301 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → (𝑢𝑆 ↔ ¬ 𝑆 < 𝑢))
185184ralbidva 3172 . . . . . . . . . . . . 13 (𝜑 → (∀𝑢𝑈 𝑢𝑆 ↔ ∀𝑢𝑈 ¬ 𝑆 < 𝑢))
186181, 185mpbid 231 . . . . . . . . . . . 12 (𝜑 → ∀𝑢𝑈 ¬ 𝑆 < 𝑢)
187 ralnex 3075 . . . . . . . . . . . 12 (∀𝑢𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢𝑈 𝑆 < 𝑢)
188186, 187sylib 217 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
189188adantr 481 . . . . . . . . . 10 ((𝜑𝑆 < (𝐵𝑍)) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
19097, 105, 189syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
191161, 190condan 816 . . . . . . . 8 (𝜑 → (𝐵𝑍) ≤ 𝑆)
192 iccleub 13319 . . . . . . . . 9 (((𝐴𝑍) ∈ ℝ* ∧ (𝐵𝑍) ∈ ℝ*𝑆 ∈ ((𝐴𝑍)[,](𝐵𝑍))) → 𝑆 ≤ (𝐵𝑍))
193167, 91, 95, 192syl3anc 1371 . . . . . . . 8 (𝜑𝑆 ≤ (𝐵𝑍))
19491, 96, 191, 193xrletrid 13074 . . . . . . 7 (𝜑 → (𝐵𝑍) = 𝑆)
19578eqcomi 2745 . . . . . . . 8 {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} = 𝑈
196195a1i 11 . . . . . . 7 (𝜑 → {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} = 𝑈)
197194, 196eleq12d 2832 . . . . . 6 (𝜑 → ((𝐵𝑍) ∈ {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} ↔ 𝑆𝑈))
19890, 197mpbird 256 . . . . 5 (𝜑 → (𝐵𝑍) ∈ {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))})
199 oveq1 7364 . . . . . . . 8 (𝑧 = (𝐵𝑍) → (𝑧 − (𝐴𝑍)) = ((𝐵𝑍) − (𝐴𝑍)))
200199oveq2d 7373 . . . . . . 7 (𝑧 = (𝐵𝑍) → (𝐺 · (𝑧 − (𝐴𝑍))) = (𝐺 · ((𝐵𝑍) − (𝐴𝑍))))
201 fveq2 6842 . . . . . . . . . . . 12 (𝑧 = (𝐵𝑍) → (𝐻𝑧) = (𝐻‘(𝐵𝑍)))
202201fveq1d 6844 . . . . . . . . . . 11 (𝑧 = (𝐵𝑍) → ((𝐻𝑧)‘(𝐷𝑗)) = ((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))
203202oveq2d 7373 . . . . . . . . . 10 (𝑧 = (𝐵𝑍) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))) = ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))
204203mpteq2dv 5207 . . . . . . . . 9 (𝑧 = (𝐵𝑍) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))
205204fveq2d 6846 . . . . . . . 8 (𝑧 = (𝐵𝑍) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))
206205oveq2d 7373 . . . . . . 7 (𝑧 = (𝐵𝑍) → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗)))))) = ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))))
207200, 206breq12d 5118 . . . . . 6 (𝑧 = (𝐵𝑍) → ((𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗)))))) ↔ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
208207elrab 3645 . . . . 5 ((𝐵𝑍) ∈ {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} ↔ ((𝐵𝑍) ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∧ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
209198, 208sylib 217 . . . 4 (𝜑 → ((𝐵𝑍) ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∧ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
210209simprd 496 . . 3 (𝜑 → (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))))
2113, 5ssfid 9211 . . . . . 6 (𝜑𝑌 ∈ Fin)
212 eqid 2736 . . . . . 6 𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
2132, 211, 6, 65, 4, 14, 15, 212hoiprodp1 44819 . . . . 5 (𝜑 → (𝐴(𝐿𝑊)𝐵) = (∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
214 eqidd 2737 . . . . . . 7 (𝜑 → ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
21514adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝑌) → 𝐴:𝑊⟶ℝ)
216 ssun1 4132 . . . . . . . . . . . 12 𝑌 ⊆ (𝑌 ∪ {𝑍})
2174eqcomi 2745 . . . . . . . . . . . 12 (𝑌 ∪ {𝑍}) = 𝑊
218216, 217sseqtri 3980 . . . . . . . . . . 11 𝑌𝑊
219 simpr 485 . . . . . . . . . . 11 ((𝜑𝑘𝑌) → 𝑘𝑌)
220218, 219sselid 3942 . . . . . . . . . 10 ((𝜑𝑘𝑌) → 𝑘𝑊)
221215, 220ffvelcdmd 7036 . . . . . . . . 9 ((𝜑𝑘𝑌) → (𝐴𝑘) ∈ ℝ)
22215adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝑌) → 𝐵:𝑊⟶ℝ)
223222, 220ffvelcdmd 7036 . . . . . . . . 9 ((𝜑𝑘𝑌) → (𝐵𝑘) ∈ ℝ)
224220, 87syldan 591 . . . . . . . . 9 ((𝜑𝑘𝑌) → (𝐴𝑘) < (𝐵𝑘))
225221, 223, 224volicon0 44806 . . . . . . . 8 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
226225prodeq2dv 15806 . . . . . . 7 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
22777a1i 11 . . . . . . . 8 (𝜑𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)))
228 hoidmvlelem4.n . . . . . . . . 9 (𝜑𝑌 ≠ ∅)
229218a1i 11 . . . . . . . . . 10 (𝜑𝑌𝑊)
23014, 229fssresd 6709 . . . . . . . . 9 (𝜑 → (𝐴𝑌):𝑌⟶ℝ)
23115, 229fssresd 6709 . . . . . . . . 9 (𝜑 → (𝐵𝑌):𝑌⟶ℝ)
2322, 211, 228, 230, 231hoidmvn0val 44815 . . . . . . . 8 (𝜑 → ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) = ∏𝑘𝑌 (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))))
233 fvres 6861 . . . . . . . . . . . . 13 (𝑘𝑌 → ((𝐴𝑌)‘𝑘) = (𝐴𝑘))
234 fvres 6861 . . . . . . . . . . . . 13 (𝑘𝑌 → ((𝐵𝑌)‘𝑘) = (𝐵𝑘))
235233, 234oveq12d 7375 . . . . . . . . . . . 12 (𝑘𝑌 → (((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
236235fveq2d 6846 . . . . . . . . . . 11 (𝑘𝑌 → (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
237236adantl 482 . . . . . . . . . 10 ((𝜑𝑘𝑌) → (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
238 volico 44214 . . . . . . . . . . 11 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
239221, 223, 238syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
240239, 225eqtr3d 2778 . . . . . . . . . 10 ((𝜑𝑘𝑌) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
241237, 239, 2403eqtrd 2780 . . . . . . . . 9 ((𝜑𝑘𝑌) → (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
242241prodeq2dv 15806 . . . . . . . 8 (𝜑 → ∏𝑘𝑌 (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
243227, 232, 2423eqtrd 2780 . . . . . . 7 (𝜑𝐺 = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
244214, 226, 2433eqtr4d 2786 . . . . . 6 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
24599, 48, 89volicon0 44806 . . . . . 6 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) = ((𝐵𝑍) − (𝐴𝑍)))
246244, 245oveq12d 7375 . . . . 5 (𝜑 → (∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))) = (𝐺 · ((𝐵𝑍) − (𝐴𝑍))))
247213, 246eqtrd 2776 . . . 4 (𝜑 → (𝐴(𝐿𝑊)𝐵) = (𝐺 · ((𝐵𝑍) − (𝐴𝑍))))
248247breq1d 5115 . . 3 (𝜑 → ((𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))) ↔ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
249210, 248mpbird 256 . 2 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))))
250 0le1 11678 . . . . 5 0 ≤ 1
251250a1i 11 . . . 4 (𝜑 → 0 ≤ 1)
25219rpge0d 12961 . . . 4 (𝜑 → 0 ≤ 𝐸)
25318, 20, 251, 252addge0d 11731 . . 3 (𝜑 → 0 ≤ (1 + 𝐸))
25474, 61, 21, 253, 69lemul2ad 12095 . 2 (𝜑 → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
25517, 75, 76, 249, 254letrd 11312 1 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  wss 3910  c0 4282  ifcif 4486  {csn 4586   ciun 4954   class class class wbr 5105  cmpt 5188  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Xcixp 8835  Fincfn 8883  supcsup 9376  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385  cn 12153  +crp 12915  [,)cico 13266  [,]cicc 13267  cprod 15788  volcvol 24827  Σ^csumge0 44593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-sumge0 44594
This theorem is referenced by:  hoidmvlelem5  44830
  Copyright terms: Public domain W3C validator