| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rge0ssre 13496 | . . 3
⊢
(0[,)+∞) ⊆ ℝ | 
| 2 |  | hoidmvlelem4.l | . . . 4
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) | 
| 3 |  | hoidmvlelem4.x | . . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) | 
| 4 |  | hoidmvlelem4.w | . . . . . 6
⊢ 𝑊 = (𝑌 ∪ {𝑍}) | 
| 5 |  | hoidmvlelem4.y | . . . . . . 7
⊢ (𝜑 → 𝑌 ⊆ 𝑋) | 
| 6 |  | hoidmvlelem4.z | . . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) | 
| 7 | 6 | eldifad 3963 | . . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝑋) | 
| 8 |  | snssi 4808 | . . . . . . . 8
⊢ (𝑍 ∈ 𝑋 → {𝑍} ⊆ 𝑋) | 
| 9 | 7, 8 | syl 17 | . . . . . . 7
⊢ (𝜑 → {𝑍} ⊆ 𝑋) | 
| 10 | 5, 9 | unssd 4192 | . . . . . 6
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ⊆ 𝑋) | 
| 11 | 4, 10 | eqsstrid 4022 | . . . . 5
⊢ (𝜑 → 𝑊 ⊆ 𝑋) | 
| 12 |  | ssfi 9213 | . . . . 5
⊢ ((𝑋 ∈ Fin ∧ 𝑊 ⊆ 𝑋) → 𝑊 ∈ Fin) | 
| 13 | 3, 11, 12 | syl2anc 584 | . . . 4
⊢ (𝜑 → 𝑊 ∈ Fin) | 
| 14 |  | hoidmvlelem4.a | . . . 4
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) | 
| 15 |  | hoidmvlelem4.b | . . . 4
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) | 
| 16 | 2, 13, 14, 15 | hoidmvcl 46597 | . . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ (0[,)+∞)) | 
| 17 | 1, 16 | sselid 3981 | . 2
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ ℝ) | 
| 18 |  | 1red 11262 | . . . 4
⊢ (𝜑 → 1 ∈
ℝ) | 
| 19 |  | hoidmvlelem4.e | . . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) | 
| 20 | 19 | rpred 13077 | . . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) | 
| 21 | 18, 20 | readdcld 11290 | . . 3
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) | 
| 22 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑗𝜑 | 
| 23 |  | nnex 12272 | . . . . . 6
⊢ ℕ
∈ V | 
| 24 | 23 | a1i 11 | . . . . 5
⊢ (𝜑 → ℕ ∈
V) | 
| 25 |  | icossicc 13476 | . . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) | 
| 26 | 13 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) | 
| 27 |  | hoidmvlelem4.c | . . . . . . . . 9
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) | 
| 28 | 27 | ffvelcdmda 7104 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) | 
| 29 |  | elmapi 8889 | . . . . . . . 8
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) | 
| 30 | 28, 29 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) | 
| 31 |  | hoidmvlelem4.h | . . . . . . . . 9
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) | 
| 32 |  | eleq1 2829 | . . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → (𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) | 
| 33 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → (𝑐‘𝑗) = (𝑐‘ℎ)) | 
| 34 | 33 | breq1d 5153 | . . . . . . . . . . . . . 14
⊢ (𝑗 = ℎ → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘ℎ) ≤ 𝑥)) | 
| 35 | 34, 33 | ifbieq1d 4550 | . . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)) | 
| 36 | 32, 33, 35 | ifbieq12d 4554 | . . . . . . . . . . . 12
⊢ (𝑗 = ℎ → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) | 
| 37 | 36 | cbvmptv 5255 | . . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) | 
| 38 | 37 | mpteq2i 5247 | . . . . . . . . . 10
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)))) | 
| 39 | 38 | mpteq2i 5247 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) | 
| 40 | 31, 39 | eqtri 2765 | . . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) | 
| 41 |  | snidg 4660 | . . . . . . . . . . . . 13
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) | 
| 42 | 6, 41 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ {𝑍}) | 
| 43 |  | elun2 4183 | . . . . . . . . . . . 12
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) | 
| 44 | 42, 43 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) | 
| 45 | 4 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 = (𝑌 ∪ {𝑍})) | 
| 46 | 45 | eqcomd 2743 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑌 ∪ {𝑍}) = 𝑊) | 
| 47 | 44, 46 | eleqtrd 2843 | . . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝑊) | 
| 48 | 15, 47 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) | 
| 49 | 48 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑍) ∈ ℝ) | 
| 50 |  | hoidmvlelem4.d | . . . . . . . . . 10
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) | 
| 51 | 50 | ffvelcdmda 7104 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) | 
| 52 |  | elmapi 8889 | . . . . . . . . 9
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) | 
| 53 | 51, 52 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) | 
| 54 | 40, 49, 26, 53 | hsphoif 46591 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)):𝑊⟶ℝ) | 
| 55 | 2, 26, 30, 54 | hoidmvcl 46597 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,)+∞)) | 
| 56 | 25, 55 | sselid 3981 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,]+∞)) | 
| 57 | 22, 24, 56 | sge0clmpt 46440 | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) | 
| 58 | 22, 24, 56 | sge0xrclmpt 46443 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈
ℝ*) | 
| 59 |  | pnfxr 11315 | . . . . . 6
⊢ +∞
∈ ℝ* | 
| 60 | 59 | a1i 11 | . . . . 5
⊢ (𝜑 → +∞ ∈
ℝ*) | 
| 61 |  | hoidmvlelem4.r | . . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) | 
| 62 | 61 | rexrd 11311 | . . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) | 
| 63 | 2, 26, 30, 53 | hoidmvcl 46597 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) | 
| 64 | 25, 63 | sselid 3981 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) | 
| 65 | 6 | eldifbd 3964 | . . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) | 
| 66 | 47, 65 | eldifd 3962 | . . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) | 
| 67 | 66 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) | 
| 68 | 2, 26, 67, 4, 49, 40, 30, 53 | hsphoidmvle 46601 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) | 
| 69 | 22, 24, 56, 64, 68 | sge0lempt 46425 | . . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) | 
| 70 | 61 | ltpnfd 13163 | . . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) | 
| 71 | 58, 62, 60, 69, 70 | xrlelttrd 13202 | . . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) < +∞) | 
| 72 | 58, 60, 71 | xrltned 45368 | . . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) | 
| 73 |  | ge0xrre 45544 | . . . 4
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) | 
| 74 | 57, 72, 73 | syl2anc 584 | . . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) | 
| 75 | 21, 74 | remulcld 11291 | . 2
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) ∈ ℝ) | 
| 76 | 21, 61 | remulcld 11291 | . 2
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) ∈ ℝ) | 
| 77 |  | hoidmvlelem4.14 | . . . . . . 7
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) | 
| 78 |  | hoidmvlelem4.u | . . . . . . 7
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} | 
| 79 |  | hoidmvlelem4.s | . . . . . . 7
⊢ 𝑆 = sup(𝑈, ℝ, < ) | 
| 80 | 47 | ancli 548 | . . . . . . . 8
⊢ (𝜑 → (𝜑 ∧ 𝑍 ∈ 𝑊)) | 
| 81 |  | eleq1 2829 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑍 → (𝑘 ∈ 𝑊 ↔ 𝑍 ∈ 𝑊)) | 
| 82 | 81 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑘 = 𝑍 → ((𝜑 ∧ 𝑘 ∈ 𝑊) ↔ (𝜑 ∧ 𝑍 ∈ 𝑊))) | 
| 83 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) | 
| 84 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) | 
| 85 | 83, 84 | breq12d 5156 | . . . . . . . . . 10
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘) < (𝐵‘𝑘) ↔ (𝐴‘𝑍) < (𝐵‘𝑍))) | 
| 86 | 82, 85 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑘 = 𝑍 → (((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑊) → (𝐴‘𝑍) < (𝐵‘𝑍)))) | 
| 87 |  | hoidmvlelem4.k | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) | 
| 88 | 86, 87 | vtoclg 3554 | . . . . . . . 8
⊢ (𝑍 ∈ 𝑊 → ((𝜑 ∧ 𝑍 ∈ 𝑊) → (𝐴‘𝑍) < (𝐵‘𝑍))) | 
| 89 | 47, 80, 88 | sylc 65 | . . . . . . 7
⊢ (𝜑 → (𝐴‘𝑍) < (𝐵‘𝑍)) | 
| 90 | 2, 3, 5, 6, 4, 14,
15, 27, 50, 61, 31, 77, 19, 78, 79, 89 | hoidmvlelem1 46610 | . . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑈) | 
| 91 | 48 | rexrd 11311 | . . . . . . . 8
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) | 
| 92 |  | iccssxr 13470 | . . . . . . . . 9
⊢ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆
ℝ* | 
| 93 |  | ssrab2 4080 | . . . . . . . . . . 11
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) | 
| 94 | 78, 93 | eqsstri 4030 | . . . . . . . . . 10
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) | 
| 95 | 94, 90 | sselid 3981 | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) | 
| 96 | 92, 95 | sselid 3981 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈
ℝ*) | 
| 97 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → 𝜑) | 
| 98 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → ¬ (𝐵‘𝑍) ≤ 𝑆) | 
| 99 | 14, 47 | ffvelcdmd 7105 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) | 
| 100 | 99, 48 | iccssred 13474 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆ ℝ) | 
| 101 | 100, 95 | sseldd 3984 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ ℝ) | 
| 102 | 101 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → 𝑆 ∈ ℝ) | 
| 103 | 97, 48 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → (𝐵‘𝑍) ∈ ℝ) | 
| 104 | 102, 103 | ltnled 11408 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → (𝑆 < (𝐵‘𝑍) ↔ ¬ (𝐵‘𝑍) ≤ 𝑆)) | 
| 105 | 98, 104 | mpbird 257 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → 𝑆 < (𝐵‘𝑍)) | 
| 106 | 3 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑋 ∈ Fin) | 
| 107 | 5 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑌 ⊆ 𝑋) | 
| 108 | 6 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑍 ∈ (𝑋 ∖ 𝑌)) | 
| 109 | 14 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐴:𝑊⟶ℝ) | 
| 110 | 15 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐵:𝑊⟶ℝ) | 
| 111 | 87 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) | 
| 112 |  | eqid 2737 | . . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑌 ↦ 0) = (𝑦 ∈ 𝑌 ↦ 0) | 
| 113 | 27 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) | 
| 114 |  | fveq2 6906 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝐶‘𝑖) = (𝐶‘𝑗)) | 
| 115 | 114 | fveq1d 6908 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝐶‘𝑖)‘𝑍) = ((𝐶‘𝑗)‘𝑍)) | 
| 116 |  | fveq2 6906 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝐷‘𝑖) = (𝐷‘𝑗)) | 
| 117 | 116 | fveq1d 6908 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝐷‘𝑖)‘𝑍) = ((𝐷‘𝑗)‘𝑍)) | 
| 118 | 115, 117 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) | 
| 119 | 118 | eleq2d 2827 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) | 
| 120 | 114 | reseq1d 5996 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝐶‘𝑖) ↾ 𝑌) = ((𝐶‘𝑗) ↾ 𝑌)) | 
| 121 | 119, 120 | ifbieq1d 4550 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) | 
| 122 | 121 | cbvmptv 5255 | . . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) | 
| 123 | 50 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) | 
| 124 | 116 | reseq1d 5996 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝐷‘𝑖) ↾ 𝑌) = ((𝐷‘𝑗) ↾ 𝑌)) | 
| 125 | 119, 124 | ifbieq1d 4550 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) | 
| 126 | 125 | cbvmptv 5255 | . . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) | 
| 127 | 61 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) | 
| 128 | 19 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐸 ∈
ℝ+) | 
| 129 | 90 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑆 ∈ 𝑈) | 
| 130 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑆 < (𝐵‘𝑍)) | 
| 131 |  | biid 261 | . . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) | 
| 132 |  | eqidd 2738 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑦 → 0 = 0) | 
| 133 | 132 | cbvmptv 5255 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑌 ↦ 0) = (𝑦 ∈ 𝑌 ↦ 0) | 
| 134 | 131, 133 | ifbieq2i 4551 | . . . . . . . . . . . . . . . 16
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) | 
| 135 | 134 | mpteq2i 5247 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) | 
| 136 | 135 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))) | 
| 137 |  | id 22 | . . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑗 → 𝑙 = 𝑗) | 
| 138 | 136, 137 | fveq12d 6913 | . . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)) | 
| 139 | 131, 133 | ifbieq2i 4551 | . . . . . . . . . . . . . . . 16
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) | 
| 140 | 139 | mpteq2i 5247 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) | 
| 141 | 140 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))) | 
| 142 | 141, 137 | fveq12d 6913 | . . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)) | 
| 143 | 138, 142 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑙 = 𝑗 → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙)) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗))) | 
| 144 | 143 | cbvmptv 5255 | . . . . . . . . . . 11
⊢ (𝑙 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙))) = (𝑗 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗))) | 
| 145 |  | hoidmvlelem4.i | . . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) | 
| 146 | 145 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) | 
| 147 |  | hoidmvlelem4.i2 | . . . . . . . . . . . 12
⊢ (𝜑 → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 148 | 147 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) | 
| 149 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) = (𝑥 ∈ X𝑦 ∈ 𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) | 
| 150 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝐴‘𝑦) = (𝐴‘𝑘)) | 
| 151 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝐵‘𝑦) = (𝐵‘𝑘)) | 
| 152 | 150, 151 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑘 → ((𝐴‘𝑦)[,)(𝐵‘𝑦)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 153 | 152 | cbvixpv 8955 | . . . . . . . . . . . . 13
⊢ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) = X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) | 
| 154 |  | eleq1 2829 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝑦 ∈ 𝑌 ↔ 𝑘 ∈ 𝑌)) | 
| 155 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝑥‘𝑦) = (𝑥‘𝑘)) | 
| 156 | 154, 155 | ifbieq1d 4550 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑘 → if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) | 
| 157 | 156 | cbvmptv 5255 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆)) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) | 
| 158 | 153, 157 | mpteq12i 5248 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) = (𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↦ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) | 
| 159 | 149, 158 | eqtri 2765 | . . . . . . . . . . 11
⊢ (𝑥 ∈ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) = (𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↦ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) | 
| 160 | 2, 106, 107, 108, 4, 109, 110, 111, 112, 113, 122, 123, 126, 127, 31, 77, 128, 78, 129, 130, 144, 146, 148, 159 | hoidmvlelem3 46612 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | 
| 161 | 97, 105, 160 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | 
| 162 | 94 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍))) | 
| 163 | 162, 100 | sstrd 3994 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈 ⊆ ℝ) | 
| 164 | 163 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ⊆ ℝ) | 
| 165 |  | ne0i 4341 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝑈 → 𝑈 ≠ ∅) | 
| 166 | 165 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ≠ ∅) | 
| 167 | 99 | rexrd 11311 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) | 
| 168 | 167 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈
ℝ*) | 
| 169 | 91 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈
ℝ*) | 
| 170 | 162 | sselda 3983 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) | 
| 171 |  | iccleub 13442 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → 𝑢 ≤ (𝐵‘𝑍)) | 
| 172 | 168, 169,
170, 171 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ (𝐵‘𝑍)) | 
| 173 | 172 | ralrimiva 3146 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 𝑢 ≤ (𝐵‘𝑍)) | 
| 174 |  | brralrspcev 5203 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐵‘𝑍) ∈ ℝ ∧ ∀𝑢 ∈ 𝑈 𝑢 ≤ (𝐵‘𝑍)) → ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) | 
| 175 | 48, 173, 174 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) | 
| 176 | 175 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) | 
| 177 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) | 
| 178 |  | suprub 12229 | . . . . . . . . . . . . . . . 16
⊢ (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) | 
| 179 | 164, 166,
176, 177, 178 | syl31anc 1375 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) | 
| 180 | 179, 79 | breqtrrdi 5185 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ 𝑆) | 
| 181 | 180 | ralrimiva 3146 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑆) | 
| 182 | 164, 177 | sseldd 3984 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ℝ) | 
| 183 | 101 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑆 ∈ ℝ) | 
| 184 | 182, 183 | lenltd 11407 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑢)) | 
| 185 | 184 | ralbidva 3176 | . . . . . . . . . . . . 13
⊢ (𝜑 → (∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑆 ↔ ∀𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢)) | 
| 186 | 181, 185 | mpbid 232 | . . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢) | 
| 187 |  | ralnex 3072 | . . . . . . . . . . . 12
⊢
(∀𝑢 ∈
𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | 
| 188 | 186, 187 | sylib 218 | . . . . . . . . . . 11
⊢ (𝜑 → ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | 
| 189 | 188 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | 
| 190 | 97, 105, 189 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | 
| 191 | 161, 190 | condan 818 | . . . . . . . 8
⊢ (𝜑 → (𝐵‘𝑍) ≤ 𝑆) | 
| 192 |  | iccleub 13442 | . . . . . . . . 9
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → 𝑆 ≤ (𝐵‘𝑍)) | 
| 193 | 167, 91, 95, 192 | syl3anc 1373 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ≤ (𝐵‘𝑍)) | 
| 194 | 91, 96, 191, 193 | xrletrid 13197 | . . . . . . 7
⊢ (𝜑 → (𝐵‘𝑍) = 𝑆) | 
| 195 | 78 | eqcomi 2746 | . . . . . . . 8
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} = 𝑈 | 
| 196 | 195 | a1i 11 | . . . . . . 7
⊢ (𝜑 → {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} = 𝑈) | 
| 197 | 194, 196 | eleq12d 2835 | . . . . . 6
⊢ (𝜑 → ((𝐵‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ 𝑆 ∈ 𝑈)) | 
| 198 | 90, 197 | mpbird 257 | . . . . 5
⊢ (𝜑 → (𝐵‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) | 
| 199 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑧 = (𝐵‘𝑍) → (𝑧 − (𝐴‘𝑍)) = ((𝐵‘𝑍) − (𝐴‘𝑍))) | 
| 200 | 199 | oveq2d 7447 | . . . . . . 7
⊢ (𝑧 = (𝐵‘𝑍) → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) | 
| 201 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑧 = (𝐵‘𝑍) → (𝐻‘𝑧) = (𝐻‘(𝐵‘𝑍))) | 
| 202 | 201 | fveq1d 6908 | . . . . . . . . . . 11
⊢ (𝑧 = (𝐵‘𝑍) → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) | 
| 203 | 202 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝑧 = (𝐵‘𝑍) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))) | 
| 204 | 203 | mpteq2dv 5244 | . . . . . . . . 9
⊢ (𝑧 = (𝐵‘𝑍) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) | 
| 205 | 204 | fveq2d 6910 | . . . . . . . 8
⊢ (𝑧 = (𝐵‘𝑍) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) | 
| 206 | 205 | oveq2d 7447 | . . . . . . 7
⊢ (𝑧 = (𝐵‘𝑍) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))))) | 
| 207 | 200, 206 | breq12d 5156 | . . . . . 6
⊢ (𝑧 = (𝐵‘𝑍) → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) | 
| 208 | 207 | elrab 3692 | . . . . 5
⊢ ((𝐵‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ ((𝐵‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) | 
| 209 | 198, 208 | sylib 218 | . . . 4
⊢ (𝜑 → ((𝐵‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) | 
| 210 | 209 | simprd 495 | . . 3
⊢ (𝜑 → (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))))) | 
| 211 | 3, 5 | ssfid 9301 | . . . . . 6
⊢ (𝜑 → 𝑌 ∈ Fin) | 
| 212 |  | eqid 2737 | . . . . . 6
⊢
∏𝑘 ∈
𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 213 | 2, 211, 6, 65, 4, 14, 15, 212 | hoiprodp1 46603 | . . . . 5
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) = (∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))))) | 
| 214 |  | eqidd 2738 | . . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) | 
| 215 | 14 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐴:𝑊⟶ℝ) | 
| 216 |  | ssun1 4178 | . . . . . . . . . . . 12
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) | 
| 217 | 4 | eqcomi 2746 | . . . . . . . . . . . 12
⊢ (𝑌 ∪ {𝑍}) = 𝑊 | 
| 218 | 216, 217 | sseqtri 4032 | . . . . . . . . . . 11
⊢ 𝑌 ⊆ 𝑊 | 
| 219 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑌) | 
| 220 | 218, 219 | sselid 3981 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑊) | 
| 221 | 215, 220 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) ∈ ℝ) | 
| 222 | 15 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵:𝑊⟶ℝ) | 
| 223 | 222, 220 | ffvelcdmd 7105 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐵‘𝑘) ∈ ℝ) | 
| 224 | 220, 87 | syldan 591 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) < (𝐵‘𝑘)) | 
| 225 | 221, 223,
224 | volicon0 46590 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) | 
| 226 | 225 | prodeq2dv 15958 | . . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) | 
| 227 | 77 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) | 
| 228 |  | hoidmvlelem4.n | . . . . . . . . 9
⊢ (𝜑 → 𝑌 ≠ ∅) | 
| 229 | 218 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ 𝑊) | 
| 230 | 14, 229 | fssresd 6775 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) | 
| 231 | 15, 229 | fssresd 6775 | . . . . . . . . 9
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) | 
| 232 | 2, 211, 228, 230, 231 | hoidmvn0val 46599 | . . . . . . . 8
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) | 
| 233 |  | fvres 6925 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑌 → ((𝐴 ↾ 𝑌)‘𝑘) = (𝐴‘𝑘)) | 
| 234 |  | fvres 6925 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑌 → ((𝐵 ↾ 𝑌)‘𝑘) = (𝐵‘𝑘)) | 
| 235 | 233, 234 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑌 → (((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) | 
| 236 | 235 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑌 → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 237 | 236 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) | 
| 238 |  | volico 45998 | . . . . . . . . . . 11
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) | 
| 239 | 221, 223,
238 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) | 
| 240 | 239, 225 | eqtr3d 2779 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) = ((𝐵‘𝑘) − (𝐴‘𝑘))) | 
| 241 | 237, 239,
240 | 3eqtrd 2781 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) | 
| 242 | 241 | prodeq2dv 15958 | . . . . . . . 8
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) | 
| 243 | 227, 232,
242 | 3eqtrd 2781 | . . . . . . 7
⊢ (𝜑 → 𝐺 = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) | 
| 244 | 214, 226,
243 | 3eqtr4d 2787 | . . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 𝐺) | 
| 245 | 99, 48, 89 | volicon0 46590 | . . . . . 6
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = ((𝐵‘𝑍) − (𝐴‘𝑍))) | 
| 246 | 244, 245 | oveq12d 7449 | . . . . 5
⊢ (𝜑 → (∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) = (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) | 
| 247 | 213, 246 | eqtrd 2777 | . . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) = (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) | 
| 248 | 247 | breq1d 5153 | . . 3
⊢ (𝜑 → ((𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) ↔ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) | 
| 249 | 210, 248 | mpbird 257 | . 2
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))))) | 
| 250 |  | 0le1 11786 | . . . . 5
⊢ 0 ≤
1 | 
| 251 | 250 | a1i 11 | . . . 4
⊢ (𝜑 → 0 ≤ 1) | 
| 252 | 19 | rpge0d 13081 | . . . 4
⊢ (𝜑 → 0 ≤ 𝐸) | 
| 253 | 18, 20, 251, 252 | addge0d 11839 | . . 3
⊢ (𝜑 → 0 ≤ (1 + 𝐸)) | 
| 254 | 74, 61, 21, 253, 69 | lemul2ad 12208 | . 2
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) | 
| 255 | 17, 75, 76, 249, 254 | letrd 11418 | 1
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |