| Step | Hyp | Ref
| Expression |
| 1 | | rge0ssre 13478 |
. . 3
⊢
(0[,)+∞) ⊆ ℝ |
| 2 | | hoidmvlelem4.l |
. . . 4
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 3 | | hoidmvlelem4.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 4 | | hoidmvlelem4.w |
. . . . . 6
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
| 5 | | hoidmvlelem4.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 6 | | hoidmvlelem4.z |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 7 | 6 | eldifad 3943 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝑋) |
| 8 | | snssi 4789 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑋 → {𝑍} ⊆ 𝑋) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑍} ⊆ 𝑋) |
| 10 | 5, 9 | unssd 4172 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ⊆ 𝑋) |
| 11 | 4, 10 | eqsstrid 4002 |
. . . . 5
⊢ (𝜑 → 𝑊 ⊆ 𝑋) |
| 12 | | ssfi 9192 |
. . . . 5
⊢ ((𝑋 ∈ Fin ∧ 𝑊 ⊆ 𝑋) → 𝑊 ∈ Fin) |
| 13 | 3, 11, 12 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 14 | | hoidmvlelem4.a |
. . . 4
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
| 15 | | hoidmvlelem4.b |
. . . 4
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
| 16 | 2, 13, 14, 15 | hoidmvcl 46578 |
. . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ (0[,)+∞)) |
| 17 | 1, 16 | sselid 3961 |
. 2
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ ℝ) |
| 18 | | 1red 11241 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
| 19 | | hoidmvlelem4.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 20 | 19 | rpred 13056 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 21 | 18, 20 | readdcld 11269 |
. . 3
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) |
| 22 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
| 23 | | nnex 12251 |
. . . . . 6
⊢ ℕ
∈ V |
| 24 | 23 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
| 25 | | icossicc 13458 |
. . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 26 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
| 27 | | hoidmvlelem4.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 28 | 27 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 29 | | elmapi 8868 |
. . . . . . . 8
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 31 | | hoidmvlelem4.h |
. . . . . . . . 9
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 32 | | eleq1 2823 |
. . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → (𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
| 33 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → (𝑐‘𝑗) = (𝑐‘ℎ)) |
| 34 | 33 | breq1d 5134 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = ℎ → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘ℎ) ≤ 𝑥)) |
| 35 | 34, 33 | ifbieq1d 4530 |
. . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)) |
| 36 | 32, 33, 35 | ifbieq12d 4534 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
| 37 | 36 | cbvmptv 5230 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
| 38 | 37 | mpteq2i 5222 |
. . . . . . . . . 10
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)))) |
| 39 | 38 | mpteq2i 5222 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
| 40 | 31, 39 | eqtri 2759 |
. . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
| 41 | | snidg 4641 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) |
| 42 | 6, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
| 43 | | elun2 4163 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 44 | 42, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 45 | 4 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 = (𝑌 ∪ {𝑍})) |
| 46 | 45 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌 ∪ {𝑍}) = 𝑊) |
| 47 | 44, 46 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| 48 | 15, 47 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
| 49 | 48 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑍) ∈ ℝ) |
| 50 | | hoidmvlelem4.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 51 | 50 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 52 | | elmapi 8868 |
. . . . . . . . 9
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 53 | 51, 52 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 54 | 40, 49, 26, 53 | hsphoif 46572 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)):𝑊⟶ℝ) |
| 55 | 2, 26, 30, 54 | hoidmvcl 46578 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 56 | 25, 55 | sselid 3961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 57 | 22, 24, 56 | sge0clmpt 46421 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
| 58 | 22, 24, 56 | sge0xrclmpt 46424 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈
ℝ*) |
| 59 | | pnfxr 11294 |
. . . . . 6
⊢ +∞
∈ ℝ* |
| 60 | 59 | a1i 11 |
. . . . 5
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 61 | | hoidmvlelem4.r |
. . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 62 | 61 | rexrd 11290 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 63 | 2, 26, 30, 53 | hoidmvcl 46578 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
| 64 | 25, 63 | sselid 3961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
| 65 | 6 | eldifbd 3944 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
| 66 | 47, 65 | eldifd 3942 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 67 | 66 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 68 | 2, 26, 67, 4, 49, 40, 30, 53 | hsphoidmvle 46582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
| 69 | 22, 24, 56, 64, 68 | sge0lempt 46406 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 70 | 61 | ltpnfd 13142 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 71 | 58, 62, 60, 69, 70 | xrlelttrd 13181 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) < +∞) |
| 72 | 58, 60, 71 | xrltned 45351 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) |
| 73 | | ge0xrre 45527 |
. . . 4
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
| 74 | 57, 72, 73 | syl2anc 584 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
| 75 | 21, 74 | remulcld 11270 |
. 2
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) ∈ ℝ) |
| 76 | 21, 61 | remulcld 11270 |
. 2
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) ∈ ℝ) |
| 77 | | hoidmvlelem4.14 |
. . . . . . 7
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
| 78 | | hoidmvlelem4.u |
. . . . . . 7
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} |
| 79 | | hoidmvlelem4.s |
. . . . . . 7
⊢ 𝑆 = sup(𝑈, ℝ, < ) |
| 80 | 47 | ancli 548 |
. . . . . . . 8
⊢ (𝜑 → (𝜑 ∧ 𝑍 ∈ 𝑊)) |
| 81 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑍 → (𝑘 ∈ 𝑊 ↔ 𝑍 ∈ 𝑊)) |
| 82 | 81 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑍 → ((𝜑 ∧ 𝑘 ∈ 𝑊) ↔ (𝜑 ∧ 𝑍 ∈ 𝑊))) |
| 83 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
| 84 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
| 85 | 83, 84 | breq12d 5137 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘) < (𝐵‘𝑘) ↔ (𝐴‘𝑍) < (𝐵‘𝑍))) |
| 86 | 82, 85 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = 𝑍 → (((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑊) → (𝐴‘𝑍) < (𝐵‘𝑍)))) |
| 87 | | hoidmvlelem4.k |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 88 | 86, 87 | vtoclg 3538 |
. . . . . . . 8
⊢ (𝑍 ∈ 𝑊 → ((𝜑 ∧ 𝑍 ∈ 𝑊) → (𝐴‘𝑍) < (𝐵‘𝑍))) |
| 89 | 47, 80, 88 | sylc 65 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘𝑍) < (𝐵‘𝑍)) |
| 90 | 2, 3, 5, 6, 4, 14,
15, 27, 50, 61, 31, 77, 19, 78, 79, 89 | hoidmvlelem1 46591 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| 91 | 48 | rexrd 11290 |
. . . . . . . 8
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
| 92 | | iccssxr 13452 |
. . . . . . . . 9
⊢ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆
ℝ* |
| 93 | | ssrab2 4060 |
. . . . . . . . . . 11
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 94 | 78, 93 | eqsstri 4010 |
. . . . . . . . . 10
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 95 | 94, 90 | sselid 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 96 | 92, 95 | sselid 3961 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
| 97 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → 𝜑) |
| 98 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → ¬ (𝐵‘𝑍) ≤ 𝑆) |
| 99 | 14, 47 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
| 100 | 99, 48 | iccssred 13456 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆ ℝ) |
| 101 | 100, 95 | sseldd 3964 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 102 | 101 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → 𝑆 ∈ ℝ) |
| 103 | 97, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → (𝐵‘𝑍) ∈ ℝ) |
| 104 | 102, 103 | ltnled 11387 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → (𝑆 < (𝐵‘𝑍) ↔ ¬ (𝐵‘𝑍) ≤ 𝑆)) |
| 105 | 98, 104 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → 𝑆 < (𝐵‘𝑍)) |
| 106 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑋 ∈ Fin) |
| 107 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑌 ⊆ 𝑋) |
| 108 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 109 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐴:𝑊⟶ℝ) |
| 110 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐵:𝑊⟶ℝ) |
| 111 | 87 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 112 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑌 ↦ 0) = (𝑦 ∈ 𝑌 ↦ 0) |
| 113 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 114 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝐶‘𝑖) = (𝐶‘𝑗)) |
| 115 | 114 | fveq1d 6883 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝐶‘𝑖)‘𝑍) = ((𝐶‘𝑗)‘𝑍)) |
| 116 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝐷‘𝑖) = (𝐷‘𝑗)) |
| 117 | 116 | fveq1d 6883 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝐷‘𝑖)‘𝑍) = ((𝐷‘𝑗)‘𝑍)) |
| 118 | 115, 117 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 119 | 118 | eleq2d 2821 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 120 | 114 | reseq1d 5970 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝐶‘𝑖) ↾ 𝑌) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 121 | 119, 120 | ifbieq1d 4530 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 122 | 121 | cbvmptv 5230 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 123 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 124 | 116 | reseq1d 5970 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((𝐷‘𝑖) ↾ 𝑌) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 125 | 119, 124 | ifbieq1d 4530 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 126 | 125 | cbvmptv 5230 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 127 | 61 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 128 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝐸 ∈
ℝ+) |
| 129 | 90 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑆 ∈ 𝑈) |
| 130 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → 𝑆 < (𝐵‘𝑍)) |
| 131 | | biid 261 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 132 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑦 → 0 = 0) |
| 133 | 132 | cbvmptv 5230 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑌 ↦ 0) = (𝑦 ∈ 𝑌 ↦ 0) |
| 134 | 131, 133 | ifbieq2i 4531 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) |
| 135 | 134 | mpteq2i 5222 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 136 | 135 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))) |
| 137 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑗 → 𝑙 = 𝑗) |
| 138 | 136, 137 | fveq12d 6888 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)) |
| 139 | 131, 133 | ifbieq2i 4531 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)) |
| 140 | 139 | mpteq2i 5222 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0))) |
| 141 | 140 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))) |
| 142 | 141, 137 | fveq12d 6888 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)) |
| 143 | 138, 142 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑗 → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙)) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗))) |
| 144 | 143 | cbvmptv 5230 |
. . . . . . . . . . 11
⊢ (𝑙 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑤 ∈ 𝑌 ↦ 0)))‘𝑙))) = (𝑗 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐶‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗)(𝐿‘𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)), ((𝐷‘𝑖) ↾ 𝑌), (𝑦 ∈ 𝑌 ↦ 0)))‘𝑗))) |
| 145 | | hoidmvlelem4.i |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 146 | 145 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m
ℕ)∀ℎ ∈
((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 147 | | hoidmvlelem4.i2 |
. . . . . . . . . . . 12
⊢ (𝜑 → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 148 | 147 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → X𝑘 ∈ 𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 149 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) = (𝑥 ∈ X𝑦 ∈ 𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) |
| 150 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝐴‘𝑦) = (𝐴‘𝑘)) |
| 151 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝐵‘𝑦) = (𝐵‘𝑘)) |
| 152 | 150, 151 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑘 → ((𝐴‘𝑦)[,)(𝐵‘𝑦)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 153 | 152 | cbvixpv 8934 |
. . . . . . . . . . . . 13
⊢ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) = X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
| 154 | | eleq1 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝑦 ∈ 𝑌 ↔ 𝑘 ∈ 𝑌)) |
| 155 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑘 → (𝑥‘𝑦) = (𝑥‘𝑘)) |
| 156 | 154, 155 | ifbieq1d 4530 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑘 → if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆) = if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 157 | 156 | cbvmptv 5230 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆)) = (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆)) |
| 158 | 153, 157 | mpteq12i 5223 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) = (𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↦ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
| 159 | 149, 158 | eqtri 2759 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ X𝑦 ∈
𝑌 ((𝐴‘𝑦)[,)(𝐵‘𝑦)) ↦ (𝑦 ∈ 𝑊 ↦ if(𝑦 ∈ 𝑌, (𝑥‘𝑦), 𝑆))) = (𝑥 ∈ X𝑘 ∈ 𝑌 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ↦ (𝑘 ∈ 𝑊 ↦ if(𝑘 ∈ 𝑌, (𝑥‘𝑘), 𝑆))) |
| 160 | 2, 106, 107, 108, 4, 109, 110, 111, 112, 113, 122, 123, 126, 127, 31, 77, 128, 78, 129, 130, 144, 146, 148, 159 | hoidmvlelem3 46593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 161 | 97, 105, 160 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 162 | 94 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 163 | 162, 100 | sstrd 3974 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
| 164 | 163 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ⊆ ℝ) |
| 165 | | ne0i 4321 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝑈 → 𝑈 ≠ ∅) |
| 166 | 165 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ≠ ∅) |
| 167 | 99 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
| 168 | 167 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈
ℝ*) |
| 169 | 91 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈
ℝ*) |
| 170 | 162 | sselda 3963 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 171 | | iccleub 13423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → 𝑢 ≤ (𝐵‘𝑍)) |
| 172 | 168, 169,
170, 171 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ (𝐵‘𝑍)) |
| 173 | 172 | ralrimiva 3133 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 𝑢 ≤ (𝐵‘𝑍)) |
| 174 | | brralrspcev 5184 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵‘𝑍) ∈ ℝ ∧ ∀𝑢 ∈ 𝑈 𝑢 ≤ (𝐵‘𝑍)) → ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) |
| 175 | 48, 173, 174 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) |
| 176 | 175 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) |
| 177 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) |
| 178 | | suprub 12208 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑦) ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
| 179 | 164, 166,
176, 177, 178 | syl31anc 1375 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
| 180 | 179, 79 | breqtrrdi 5166 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ 𝑆) |
| 181 | 180 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑆) |
| 182 | 164, 177 | sseldd 3964 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ℝ) |
| 183 | 101 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑆 ∈ ℝ) |
| 184 | 182, 183 | lenltd 11386 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑢)) |
| 185 | 184 | ralbidva 3162 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∀𝑢 ∈ 𝑈 𝑢 ≤ 𝑆 ↔ ∀𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢)) |
| 186 | 181, 185 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 ¬ 𝑆 < 𝑢) |
| 187 | | ralnex 3063 |
. . . . . . . . . . . 12
⊢
(∀𝑢 ∈
𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 188 | 186, 187 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 189 | 188 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑆 < (𝐵‘𝑍)) → ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 190 | 97, 105, 189 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐵‘𝑍) ≤ 𝑆) → ¬ ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 191 | 161, 190 | condan 817 |
. . . . . . . 8
⊢ (𝜑 → (𝐵‘𝑍) ≤ 𝑆) |
| 192 | | iccleub 13423 |
. . . . . . . . 9
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → 𝑆 ≤ (𝐵‘𝑍)) |
| 193 | 167, 91, 95, 192 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ≤ (𝐵‘𝑍)) |
| 194 | 91, 96, 191, 193 | xrletrid 13176 |
. . . . . . 7
⊢ (𝜑 → (𝐵‘𝑍) = 𝑆) |
| 195 | 78 | eqcomi 2745 |
. . . . . . . 8
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} = 𝑈 |
| 196 | 195 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} = 𝑈) |
| 197 | 194, 196 | eleq12d 2829 |
. . . . . 6
⊢ (𝜑 → ((𝐵‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ 𝑆 ∈ 𝑈)) |
| 198 | 90, 197 | mpbird 257 |
. . . . 5
⊢ (𝜑 → (𝐵‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
| 199 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑧 = (𝐵‘𝑍) → (𝑧 − (𝐴‘𝑍)) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 200 | 199 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑧 = (𝐵‘𝑍) → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 201 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐵‘𝑍) → (𝐻‘𝑧) = (𝐻‘(𝐵‘𝑍))) |
| 202 | 201 | fveq1d 6883 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐵‘𝑍) → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))) |
| 203 | 202 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐵‘𝑍) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))) |
| 204 | 203 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝑧 = (𝐵‘𝑍) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))) |
| 205 | 204 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑧 = (𝐵‘𝑍) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) |
| 206 | 205 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑧 = (𝐵‘𝑍) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))))) |
| 207 | 200, 206 | breq12d 5137 |
. . . . . 6
⊢ (𝑧 = (𝐵‘𝑍) → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) |
| 208 | 207 | elrab 3676 |
. . . . 5
⊢ ((𝐵‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ ((𝐵‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) |
| 209 | 198, 208 | sylib 218 |
. . . 4
⊢ (𝜑 → ((𝐵‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) |
| 210 | 209 | simprd 495 |
. . 3
⊢ (𝜑 → (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))))) |
| 211 | 3, 5 | ssfid 9278 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 212 | | eqid 2736 |
. . . . . 6
⊢
∏𝑘 ∈
𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 213 | 2, 211, 6, 65, 4, 14, 15, 212 | hoiprodp1 46584 |
. . . . 5
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) = (∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))))) |
| 214 | | eqidd 2737 |
. . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 215 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐴:𝑊⟶ℝ) |
| 216 | | ssun1 4158 |
. . . . . . . . . . . 12
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) |
| 217 | 4 | eqcomi 2745 |
. . . . . . . . . . . 12
⊢ (𝑌 ∪ {𝑍}) = 𝑊 |
| 218 | 216, 217 | sseqtri 4012 |
. . . . . . . . . . 11
⊢ 𝑌 ⊆ 𝑊 |
| 219 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑌) |
| 220 | 218, 219 | sselid 3961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑊) |
| 221 | 215, 220 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) ∈ ℝ) |
| 222 | 15 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵:𝑊⟶ℝ) |
| 223 | 222, 220 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐵‘𝑘) ∈ ℝ) |
| 224 | 220, 87 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 225 | 221, 223,
224 | volicon0 46571 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 226 | 225 | prodeq2dv 15943 |
. . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 227 | 77 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌))) |
| 228 | | hoidmvlelem4.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ≠ ∅) |
| 229 | 218 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
| 230 | 14, 229 | fssresd 6750 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
| 231 | 15, 229 | fssresd 6750 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
| 232 | 2, 211, 228, 230, 231 | hoidmvn0val 46580 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)))) |
| 233 | | fvres 6900 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑌 → ((𝐴 ↾ 𝑌)‘𝑘) = (𝐴‘𝑘)) |
| 234 | | fvres 6900 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑌 → ((𝐵 ↾ 𝑌)‘𝑘) = (𝐵‘𝑘)) |
| 235 | 233, 234 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑌 → (((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 236 | 235 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑌 → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 237 | 236 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 238 | | volico 45979 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
| 239 | 221, 223,
238 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
| 240 | 239, 225 | eqtr3d 2773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → if((𝐴‘𝑘) < (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 241 | 237, 239,
240 | 3eqtrd 2775 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 242 | 241 | prodeq2dv 15943 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘(((𝐴 ↾ 𝑌)‘𝑘)[,)((𝐵 ↾ 𝑌)‘𝑘))) = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 243 | 227, 232,
242 | 3eqtrd 2775 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = ∏𝑘 ∈ 𝑌 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
| 244 | 214, 226,
243 | 3eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 𝐺) |
| 245 | 99, 48, 89 | volicon0 46571 |
. . . . . 6
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 246 | 244, 245 | oveq12d 7428 |
. . . . 5
⊢ (𝜑 → (∏𝑘 ∈ 𝑌 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) = (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 247 | 213, 246 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) = (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 248 | 247 | breq1d 5134 |
. . 3
⊢ (𝜑 → ((𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) ↔ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))))) |
| 249 | 210, 248 | mpbird 257 |
. 2
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗))))))) |
| 250 | | 0le1 11765 |
. . . . 5
⊢ 0 ≤
1 |
| 251 | 250 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ≤ 1) |
| 252 | 19 | rpge0d 13060 |
. . . 4
⊢ (𝜑 → 0 ≤ 𝐸) |
| 253 | 18, 20, 251, 252 | addge0d 11818 |
. . 3
⊢ (𝜑 → 0 ≤ (1 + 𝐸)) |
| 254 | 74, 61, 21, 253, 69 | lemul2ad 12187 |
. 2
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐵‘𝑍))‘(𝐷‘𝑗)))))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |
| 255 | 17, 75, 76, 249, 254 | letrd 11397 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |