MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdass Structured version   Visualization version   GIF version

Theorem gcdass 15885
Description: Associative law for gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdass ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃)))

Proof of Theorem gcdass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anass 472 . . 3 (((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0) ↔ (𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)))
2 anass 472 . . . . 5 (((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃) ↔ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃)))
32rabbii 3420 . . . 4 {𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)} = {𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}
43supeq1i 8895 . . 3 sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < )
51, 4ifbieq2i 4449 . 2 if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < )) = if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < ))
6 gcdcl 15845 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) ∈ ℕ0)
763adant3 1129 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd 𝑀) ∈ ℕ0)
87nn0zd 12073 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd 𝑀) ∈ ℤ)
9 simp3 1135 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℤ)
10 gcdval 15835 . . . 4 (((𝑁 gcd 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
118, 9, 10syl2anc 587 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
12 gcdeq0 15855 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 gcd 𝑀) = 0 ↔ (𝑁 = 0 ∧ 𝑀 = 0)))
13123adant3 1129 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) = 0 ↔ (𝑁 = 0 ∧ 𝑀 = 0)))
1413anbi1d 632 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0) ↔ ((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0)))
1514bicomd 226 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0) ↔ ((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0)))
16 simpr 488 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
17 simpl1 1188 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
18 simpl2 1189 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℤ)
19 dvdsgcdb 15883 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥𝑁𝑥𝑀) ↔ 𝑥 ∥ (𝑁 gcd 𝑀)))
2016, 17, 18, 19syl3anc 1368 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥𝑁𝑥𝑀) ↔ 𝑥 ∥ (𝑁 gcd 𝑀)))
2120anbi1d 632 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃) ↔ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)))
2221rabbidva 3425 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)} = {𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)})
2322supeq1d 8894 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < ))
2415, 23ifbieq2d 4450 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < )) = if(((𝑁 gcd 𝑀) = 0 ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥 ∥ (𝑁 gcd 𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
2511, 24eqtr4d 2836 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = if(((𝑁 = 0 ∧ 𝑀 = 0) ∧ 𝑃 = 0), 0, sup({𝑥 ∈ ℤ ∣ ((𝑥𝑁𝑥𝑀) ∧ 𝑥𝑃)}, ℝ, < )))
26 simp1 1133 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈ ℤ)
27 gcdcl 15845 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈ ℕ0)
28273adant1 1127 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈ ℕ0)
2928nn0zd 12073 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 gcd 𝑃) ∈ ℤ)
30 gcdval 15835 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑀 gcd 𝑃) ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < )))
3126, 29, 30syl2anc 587 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < )))
32 gcdeq0 15855 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 gcd 𝑃) = 0 ↔ (𝑀 = 0 ∧ 𝑃 = 0)))
33323adant1 1127 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 gcd 𝑃) = 0 ↔ (𝑀 = 0 ∧ 𝑃 = 0)))
3433anbi2d 631 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0) ↔ (𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0))))
3534bicomd 226 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)) ↔ (𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0)))
36 simpl3 1190 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
37 dvdsgcdb 15883 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑥𝑀𝑥𝑃) ↔ 𝑥 ∥ (𝑀 gcd 𝑃)))
3816, 18, 36, 37syl3anc 1368 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥𝑀𝑥𝑃) ↔ 𝑥 ∥ (𝑀 gcd 𝑃)))
3938anbi2d 631 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃)) ↔ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))))
4039rabbidva 3425 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))} = {𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))})
4140supeq1d 8894 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < ) = sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < ))
4235, 41ifbieq2d 4450 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < )) = if((𝑁 = 0 ∧ (𝑀 gcd 𝑃) = 0), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁𝑥 ∥ (𝑀 gcd 𝑃))}, ℝ, < )))
4331, 42eqtr4d 2836 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 gcd (𝑀 gcd 𝑃)) = if((𝑁 = 0 ∧ (𝑀 = 0 ∧ 𝑃 = 0)), 0, sup({𝑥 ∈ ℤ ∣ (𝑥𝑁 ∧ (𝑥𝑀𝑥𝑃))}, ℝ, < )))
445, 25, 433eqtr4a 2859 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  ifcif 4425   class class class wbr 5030  (class class class)co 7135  supcsup 8888  cr 10525  0cc0 10526   < clt 10664  0cn0 11885  cz 11969  cdvds 15599   gcd cgcd 15833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834
This theorem is referenced by:  rpmulgcd  15896  coprimeprodsq  16135  gcd32  33096  gcdabsorb  33097
  Copyright terms: Public domain W3C validator