Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr44 Structured version   Visualization version   GIF version

Theorem cdlemefr44 39284
Description: Value of f(r) when r is an atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefr45 instead? TODO: FIX COMMENT. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdlemef44.b 𝐡 = (Baseβ€˜πΎ)
cdlemef44.l ≀ = (leβ€˜πΎ)
cdlemef44.j ∨ = (joinβ€˜πΎ)
cdlemef44.m ∧ = (meetβ€˜πΎ)
cdlemef44.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef44.h 𝐻 = (LHypβ€˜πΎ)
cdlemef44.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef44.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemef44.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š))))
cdlemef44.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
Assertion
Ref Expression
cdlemefr44 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = ⦋𝑅 / π‘‘β¦Œπ·)
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑧   π‘₯,𝐷,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑧   π‘₯,𝐼,𝑧   ∨ ,𝑠,𝑑,π‘₯,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑧   𝑅,𝑠,𝑑,π‘₯,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑧
Allowed substitution hints:   𝐷(𝑑,𝑠)   𝐹(π‘₯,𝑧,𝑑,𝑠)   𝐼(𝑑,𝑠)   𝑂(π‘₯,𝑧,𝑑,𝑠)

Proof of Theorem cdlemefr44
StepHypRef Expression
1 cdlemef44.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cdlemef44.l . . 3 ≀ = (leβ€˜πΎ)
3 cdlemef44.j . . 3 ∨ = (joinβ€˜πΎ)
4 cdlemef44.m . . 3 ∧ = (meetβ€˜πΎ)
5 cdlemef44.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 cdlemef44.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 cdlemef44.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 eqid 2732 . . 3 ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š))) = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
9 biid 260 . . . 4 (𝑠 ≀ (𝑃 ∨ 𝑄) ↔ 𝑠 ≀ (𝑃 ∨ 𝑄))
10 vex 3478 . . . . 5 𝑠 ∈ V
11 cdlemef44.d . . . . . 6 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
1211, 8cdleme31sc 39243 . . . . 5 (𝑠 ∈ V β†’ ⦋𝑠 / π‘‘β¦Œπ· = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š))))
1310, 12ax-mp 5 . . . 4 ⦋𝑠 / π‘‘β¦Œπ· = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
149, 13ifbieq2i 4552 . . 3 if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / π‘‘β¦Œπ·) = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š))))
15 cdlemef44.o . . 3 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š))))
16 cdlemef44.f . . 3 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
17 eqid 2732 . . 3 ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))) = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š)))
181, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17cdlemefr31fv1 39270 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
19 simp2rl 1242 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑅 ∈ 𝐴)
2011, 17cdleme31sc 39243 . . 3 (𝑅 ∈ 𝐴 β†’ ⦋𝑅 / π‘‘β¦Œπ· = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
2119, 20syl 17 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ ⦋𝑅 / π‘‘β¦Œπ· = ((𝑅 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ π‘Š))))
2218, 21eqtr4d 2775 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘…) = ⦋𝑅 / π‘‘β¦Œπ·)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  Vcvv 3474  β¦‹csb 3892  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  β€˜cfv 6540  β„©crio 7360  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847
This theorem is referenced by:  cdlemefr45  39286
  Copyright terms: Public domain W3C validator