![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefr44 | Structured version Visualization version GIF version |
Description: Value of f(r) when r is an atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefr45 instead? TODO: FIX COMMENT. (Contributed by NM, 31-Mar-2013.) |
Ref | Expression |
---|---|
cdlemef44.b | β’ π΅ = (BaseβπΎ) |
cdlemef44.l | β’ β€ = (leβπΎ) |
cdlemef44.j | β’ β¨ = (joinβπΎ) |
cdlemef44.m | β’ β§ = (meetβπΎ) |
cdlemef44.a | β’ π΄ = (AtomsβπΎ) |
cdlemef44.h | β’ π» = (LHypβπΎ) |
cdlemef44.u | β’ π = ((π β¨ π) β§ π) |
cdlemef44.d | β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
cdlemef44.o | β’ π = (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), πΌ, β¦π / π‘β¦π·) β¨ (π₯ β§ π)))) |
cdlemef44.f | β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), π, π₯)) |
Ref | Expression |
---|---|
cdlemefr44 | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΉβπ ) = β¦π / π‘β¦π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef44.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | cdlemef44.l | . . 3 β’ β€ = (leβπΎ) | |
3 | cdlemef44.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | cdlemef44.m | . . 3 β’ β§ = (meetβπΎ) | |
5 | cdlemef44.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemef44.h | . . 3 β’ π» = (LHypβπΎ) | |
7 | cdlemef44.u | . . 3 β’ π = ((π β¨ π) β§ π) | |
8 | eqid 2732 | . . 3 β’ ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
9 | biid 260 | . . . 4 β’ (π β€ (π β¨ π) β π β€ (π β¨ π)) | |
10 | vex 3478 | . . . . 5 β’ π β V | |
11 | cdlemef44.d | . . . . . 6 β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) | |
12 | 11, 8 | cdleme31sc 39243 | . . . . 5 β’ (π β V β β¦π / π‘β¦π· = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π)))) |
13 | 10, 12 | ax-mp 5 | . . . 4 β’ β¦π / π‘β¦π· = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
14 | 9, 13 | ifbieq2i 4552 | . . 3 β’ if(π β€ (π β¨ π), πΌ, β¦π / π‘β¦π·) = if(π β€ (π β¨ π), πΌ, ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π)))) |
15 | cdlemef44.o | . . 3 β’ π = (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), πΌ, β¦π / π‘β¦π·) β¨ (π₯ β§ π)))) | |
16 | cdlemef44.f | . . 3 β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), π, π₯)) | |
17 | eqid 2732 | . . 3 β’ ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17 | cdlemefr31fv1 39270 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΉβπ ) = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π)))) |
19 | simp2rl 1242 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β π β π΄) | |
20 | 11, 17 | cdleme31sc 39243 | . . 3 β’ (π β π΄ β β¦π / π‘β¦π· = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π)))) |
21 | 19, 20 | syl 17 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β β¦π / π‘β¦π· = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π)))) |
22 | 18, 21 | eqtr4d 2775 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (πΉβπ ) = β¦π / π‘β¦π·) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 Vcvv 3474 β¦csb 3892 ifcif 4527 class class class wbr 5147 β¦ cmpt 5230 βcfv 6540 β©crio 7360 (class class class)co 7405 Basecbs 17140 lecple 17200 joincjn 18260 meetcmee 18261 Atomscatm 38121 HLchlt 38208 LHypclh 38843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 |
This theorem is referenced by: cdlemefr45 39286 |
Copyright terms: Public domain | W3C validator |