Proof of Theorem gsummatr01lem3
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Base‘𝐺) =
(Base‘𝐺) |
2 | | eqid 2738 |
. 2
⊢
(+g‘𝐺) = (+g‘𝐺) |
3 | | simpl 483 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ CMnd) |
4 | 3 | 3ad2ant1 1132 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐺 ∈ CMnd) |
5 | | diffi 8962 |
. . . 4
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) |
6 | 5 | adantl 482 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin) |
7 | 6 | 3ad2ant1 1132 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin) |
8 | | eqidd 2739 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))) |
9 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → (𝑖 = 𝐾 ↔ 𝑛 = 𝐾)) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → (𝑖 = 𝐾 ↔ 𝑛 = 𝐾)) |
11 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑗 = (𝑄‘𝑛) → (𝑗 = 𝐿 ↔ (𝑄‘𝑛) = 𝐿)) |
12 | 11 | ifbid 4482 |
. . . . . . . 8
⊢ (𝑗 = (𝑄‘𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄‘𝑛) = 𝐿, 0 , 𝐵)) |
13 | 12 | adantl 482 |
. . . . . . 7
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄‘𝑛) = 𝐿, 0 , 𝐵)) |
14 | | oveq12 7284 |
. . . . . . 7
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄‘𝑛))) |
15 | 10, 13, 14 | ifbieq12d 4487 |
. . . . . 6
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛)))) |
16 | | eldifsni 4723 |
. . . . . . . . 9
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛 ≠ 𝐾) |
17 | 16 | neneqd 2948 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾) |
18 | 17 | iffalsed 4470 |
. . . . . . 7
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛))) = (𝑛𝐴(𝑄‘𝑛))) |
19 | 18 | adantl 482 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛))) = (𝑛𝐴(𝑄‘𝑛))) |
20 | 15, 19 | sylan9eqr 2800 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄‘𝑛))) |
21 | | eldifi 4061 |
. . . . . 6
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛 ∈ 𝑁) |
22 | 21 | adantl 482 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛 ∈ 𝑁) |
23 | | gsummatr01.p |
. . . . . . . . . 10
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
24 | | gsummatr01.r |
. . . . . . . . . 10
⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} |
25 | 23, 24 | gsummatr01lem1 21804 |
. . . . . . . . 9
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (𝑄‘𝑛) ∈ 𝑁) |
26 | 25 | expcom 414 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑁 → (𝑄 ∈ 𝑅 → (𝑄‘𝑛) ∈ 𝑁)) |
27 | 26, 21 | syl11 33 |
. . . . . . 7
⊢ (𝑄 ∈ 𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄‘𝑛) ∈ 𝑁)) |
28 | 27 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄‘𝑛) ∈ 𝑁)) |
29 | 28 | imp 407 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑛) ∈ 𝑁) |
30 | | ovexd 7310 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄‘𝑛)) ∈ V) |
31 | 8, 20, 22, 29, 30 | ovmpod 7425 |
. . . 4
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛𝐴(𝑄‘𝑛))) |
32 | 31 | 3ad2antl3 1186 |
. . 3
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛𝐴(𝑄‘𝑛))) |
33 | | gsummatr01.s |
. . . . . . . . 9
⊢ 𝑆 = (Base‘𝐺) |
34 | 33 | eleq2i 2830 |
. . . . . . . 8
⊢ ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺)) |
35 | 34 | 2ralbii 3093 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺)) |
36 | 23, 24 | gsummatr01lem2 21805 |
. . . . . . . . . . 11
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
37 | 21, 36 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
38 | 37 | ex 413 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
39 | 38 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
40 | 39 | com3r 87 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
41 | 35, 40 | sylbi 216 |
. . . . . 6
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
42 | 41 | adantr 481 |
. . . . 5
⊢
((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
43 | 42 | imp31 418 |
. . . 4
⊢
((((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
44 | 43 | 3adantl1 1165 |
. . 3
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
45 | 32, 44 | eqeltrd 2839 |
. 2
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
46 | | simp31 1208 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐾 ∈ 𝑁) |
47 | | neldifsnd 4726 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ¬ 𝐾 ∈ (𝑁 ∖ {𝐾})) |
48 | | eqidd 2739 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑆 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))) |
49 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵)) |
50 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑗 = (𝑄‘𝐾) → (𝑗 = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
51 | 50 | ifbid 4482 |
. . . . . . . 8
⊢ (𝑗 = (𝑄‘𝐾) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄‘𝐾) = 𝐿, 0 , 𝐵)) |
52 | 49, 51 | sylan9eq 2798 |
. . . . . . 7
⊢ ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄‘𝐾) = 𝐿, 0 , 𝐵)) |
53 | 52 | adantl 482 |
. . . . . 6
⊢ (((𝐵 ∈ 𝑆 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ (𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄‘𝐾) = 𝐿, 0 , 𝐵)) |
54 | | simpr1 1193 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑆 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐾 ∈ 𝑁) |
55 | 23, 24 | gsummatr01lem1 21804 |
. . . . . . . . 9
⊢ ((𝑄 ∈ 𝑅 ∧ 𝐾 ∈ 𝑁) → (𝑄‘𝐾) ∈ 𝑁) |
56 | 55 | ancoms 459 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑄‘𝐾) ∈ 𝑁) |
57 | 56 | 3adant2 1130 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑄‘𝐾) ∈ 𝑁) |
58 | 57 | adantl 482 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑆 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑄‘𝐾) ∈ 𝑁) |
59 | | gsummatr01.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
60 | 59 | fvexi 6788 |
. . . . . . 7
⊢ 0 ∈
V |
61 | | simpl 483 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑆 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐵 ∈ 𝑆) |
62 | | ifexg 4508 |
. . . . . . 7
⊢ (( 0 ∈ V
∧ 𝐵 ∈ 𝑆) → if((𝑄‘𝐾) = 𝐿, 0 , 𝐵) ∈ V) |
63 | 60, 61, 62 | sylancr 587 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑆 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → if((𝑄‘𝐾) = 𝐿, 0 , 𝐵) ∈ V) |
64 | 48, 53, 54, 58, 63 | ovmpod 7425 |
. . . . 5
⊢ ((𝐵 ∈ 𝑆 ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) = if((𝑄‘𝐾) = 𝐿, 0 , 𝐵)) |
65 | 64 | adantll 711 |
. . . 4
⊢
(((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) = if((𝑄‘𝐾) = 𝐿, 0 , 𝐵)) |
66 | 65 | 3adant1 1129 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) = if((𝑄‘𝐾) = 𝐿, 0 , 𝐵)) |
67 | | cmnmnd 19402 |
. . . . . . 7
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
68 | 1, 59 | mndidcl 18400 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd → 0 ∈
(Base‘𝐺)) |
69 | 67, 68 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ CMnd → 0 ∈
(Base‘𝐺)) |
70 | 69 | adantr 481 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 0 ∈
(Base‘𝐺)) |
71 | 70 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 0 ∈ (Base‘𝐺)) |
72 | 33 | eleq2i 2830 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑆 ↔ 𝐵 ∈ (Base‘𝐺)) |
73 | 72 | biimpi 215 |
. . . . . 6
⊢ (𝐵 ∈ 𝑆 → 𝐵 ∈ (Base‘𝐺)) |
74 | 73 | adantl 482 |
. . . . 5
⊢
((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ (Base‘𝐺)) |
75 | 74 | 3ad2ant2 1133 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐵 ∈ (Base‘𝐺)) |
76 | 71, 75 | ifcld 4505 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → if((𝑄‘𝐾) = 𝐿, 0 , 𝐵) ∈ (Base‘𝐺)) |
77 | 66, 76 | eqeltrd 2839 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) ∈ (Base‘𝐺)) |
78 | | id 22 |
. . 3
⊢ (𝑛 = 𝐾 → 𝑛 = 𝐾) |
79 | | fveq2 6774 |
. . 3
⊢ (𝑛 = 𝐾 → (𝑄‘𝑛) = (𝑄‘𝐾)) |
80 | 78, 79 | oveq12d 7293 |
. 2
⊢ (𝑛 = 𝐾 → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾))) |
81 | 1, 2, 4, 7, 45, 46, 47, 77, 80 | gsumunsn 19561 |
1
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)))) |