MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem3 Structured version   Visualization version   GIF version

Theorem gsummatr01lem3 21714
Description: Lemma 1 for gsummatr01 21716. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01lem3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01lem3
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2738 . 2 (+g𝐺) = (+g𝐺)
3 simpl 482 . . 3 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ CMnd)
433ad2ant1 1131 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐺 ∈ CMnd)
5 diffi 8979 . . . 4 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
65adantl 481 . . 3 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin)
763ad2ant1 1131 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin)
8 eqidd 2739 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
9 eqeq1 2742 . . . . . . . 8 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
109adantr 480 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
11 eqeq1 2742 . . . . . . . . 9 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
1211ifbid 4479 . . . . . . . 8 (𝑗 = (𝑄𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
1312adantl 481 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
14 oveq12 7264 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
1510, 13, 14ifbieq12d 4484 . . . . . 6 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
16 eldifsni 4720 . . . . . . . . 9 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
1716neneqd 2947 . . . . . . . 8 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
1817iffalsed 4467 . . . . . . 7 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
1918adantl 481 . . . . . 6 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
2015, 19sylan9eqr 2801 . . . . 5 ((((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
21 eldifi 4057 . . . . . 6 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
2221adantl 481 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
23 gsummatr01.p . . . . . . . . . 10 𝑃 = (Base‘(SymGrp‘𝑁))
24 gsummatr01.r . . . . . . . . . 10 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
2523, 24gsummatr01lem1 21712 . . . . . . . . 9 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
2625expcom 413 . . . . . . . 8 (𝑛𝑁 → (𝑄𝑅 → (𝑄𝑛) ∈ 𝑁))
2726, 21syl11 33 . . . . . . 7 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄𝑛) ∈ 𝑁))
28273ad2ant3 1133 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄𝑛) ∈ 𝑁))
2928imp 406 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
30 ovexd 7290 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
318, 20, 22, 29, 30ovmpod 7403 . . . 4 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
32313ad2antl3 1185 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
33 gsummatr01.s . . . . . . . . 9 𝑆 = (Base‘𝐺)
3433eleq2i 2830 . . . . . . . 8 ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺))
35342ralbii 3091 . . . . . . 7 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺))
3623, 24gsummatr01lem2 21713 . . . . . . . . . . 11 ((𝑄𝑅𝑛𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
3721, 36sylan2 592 . . . . . . . . . 10 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
3837ex 412 . . . . . . . . 9 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
39383ad2ant3 1133 . . . . . . . 8 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4039com3r 87 . . . . . . 7 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4135, 40sylbi 216 . . . . . 6 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4241adantr 480 . . . . 5 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4342imp31 417 . . . 4 ((((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
44433adantl1 1164 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
4532, 44eqeltrd 2839 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) ∈ (Base‘𝐺))
46 simp31 1207 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐾𝑁)
47 neldifsnd 4723 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ¬ 𝐾 ∈ (𝑁 ∖ {𝐾}))
48 eqidd 2739 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
49 iftrue 4462 . . . . . . . 8 (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵))
50 eqeq1 2742 . . . . . . . . 9 (𝑗 = (𝑄𝐾) → (𝑗 = 𝐿 ↔ (𝑄𝐾) = 𝐿))
5150ifbid 4479 . . . . . . . 8 (𝑗 = (𝑄𝐾) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
5249, 51sylan9eq 2799 . . . . . . 7 ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
5352adantl 481 . . . . . 6 (((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ (𝑖 = 𝐾𝑗 = (𝑄𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
54 simpr1 1192 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐾𝑁)
5523, 24gsummatr01lem1 21712 . . . . . . . . 9 ((𝑄𝑅𝐾𝑁) → (𝑄𝐾) ∈ 𝑁)
5655ancoms 458 . . . . . . . 8 ((𝐾𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
57563adant2 1129 . . . . . . 7 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
5857adantl 481 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑄𝐾) ∈ 𝑁)
59 gsummatr01.0 . . . . . . . 8 0 = (0g𝐺)
6059fvexi 6770 . . . . . . 7 0 ∈ V
61 simpl 482 . . . . . . 7 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐵𝑆)
62 ifexg 4505 . . . . . . 7 (( 0 ∈ V ∧ 𝐵𝑆) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ V)
6360, 61, 62sylancr 586 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ V)
6448, 53, 54, 58, 63ovmpod 7403 . . . . 5 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
6564adantll 710 . . . 4 (((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
66653adant1 1128 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
67 cmnmnd 19317 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
681, 59mndidcl 18315 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
6967, 68syl 17 . . . . . 6 (𝐺 ∈ CMnd → 0 ∈ (Base‘𝐺))
7069adantr 480 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 0 ∈ (Base‘𝐺))
71703ad2ant1 1131 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 0 ∈ (Base‘𝐺))
7233eleq2i 2830 . . . . . . 7 (𝐵𝑆𝐵 ∈ (Base‘𝐺))
7372biimpi 215 . . . . . 6 (𝐵𝑆𝐵 ∈ (Base‘𝐺))
7473adantl 481 . . . . 5 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → 𝐵 ∈ (Base‘𝐺))
75743ad2ant2 1132 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐵 ∈ (Base‘𝐺))
7671, 75ifcld 4502 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ (Base‘𝐺))
7766, 76eqeltrd 2839 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) ∈ (Base‘𝐺))
78 id 22 . . 3 (𝑛 = 𝐾𝑛 = 𝐾)
79 fveq2 6756 . . 3 (𝑛 = 𝐾 → (𝑄𝑛) = (𝑄𝐾))
8078, 79oveq12d 7273 . 2 (𝑛 = 𝐾 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)))
811, 2, 4, 7, 45, 46, 47, 77, 80gsumunsn 19476 1 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  ifcif 4456  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  Basecbs 16840  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  SymGrpcsymg 18889  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-efmnd 18423  df-mulg 18616  df-cntz 18838  df-symg 18890  df-cmn 19303
This theorem is referenced by:  gsummatr01  21716
  Copyright terms: Public domain W3C validator