MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem3 Structured version   Visualization version   GIF version

Theorem gsummatr01lem3 22572
Description: Lemma 1 for gsummatr01 22574. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01lem3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01lem3
StepHypRef Expression
1 eqid 2731 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2731 . 2 (+g𝐺) = (+g𝐺)
3 simpl 482 . . 3 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ CMnd)
433ad2ant1 1133 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐺 ∈ CMnd)
5 diffi 9084 . . . 4 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
65adantl 481 . . 3 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin)
763ad2ant1 1133 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin)
8 eqidd 2732 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
9 eqeq1 2735 . . . . . . . 8 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
109adantr 480 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
11 eqeq1 2735 . . . . . . . . 9 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
1211ifbid 4496 . . . . . . . 8 (𝑗 = (𝑄𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
1312adantl 481 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
14 oveq12 7355 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
1510, 13, 14ifbieq12d 4501 . . . . . 6 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
16 eldifsni 4739 . . . . . . . . 9 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
1716neneqd 2933 . . . . . . . 8 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
1817iffalsed 4483 . . . . . . 7 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
1918adantl 481 . . . . . 6 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
2015, 19sylan9eqr 2788 . . . . 5 ((((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
21 eldifi 4078 . . . . . 6 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
2221adantl 481 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
23 gsummatr01.p . . . . . . . . . 10 𝑃 = (Base‘(SymGrp‘𝑁))
24 gsummatr01.r . . . . . . . . . 10 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
2523, 24gsummatr01lem1 22570 . . . . . . . . 9 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
2625expcom 413 . . . . . . . 8 (𝑛𝑁 → (𝑄𝑅 → (𝑄𝑛) ∈ 𝑁))
2726, 21syl11 33 . . . . . . 7 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄𝑛) ∈ 𝑁))
28273ad2ant3 1135 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄𝑛) ∈ 𝑁))
2928imp 406 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
30 ovexd 7381 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
318, 20, 22, 29, 30ovmpod 7498 . . . 4 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
32313ad2antl3 1188 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
33 gsummatr01.s . . . . . . . . 9 𝑆 = (Base‘𝐺)
3433eleq2i 2823 . . . . . . . 8 ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺))
35342ralbii 3107 . . . . . . 7 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺))
3623, 24gsummatr01lem2 22571 . . . . . . . . . . 11 ((𝑄𝑅𝑛𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
3721, 36sylan2 593 . . . . . . . . . 10 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
3837ex 412 . . . . . . . . 9 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
39383ad2ant3 1135 . . . . . . . 8 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4039com3r 87 . . . . . . 7 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4135, 40sylbi 217 . . . . . 6 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4241adantr 480 . . . . 5 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4342imp31 417 . . . 4 ((((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
44433adantl1 1167 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
4532, 44eqeltrd 2831 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) ∈ (Base‘𝐺))
46 simp31 1210 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐾𝑁)
47 neldifsnd 4742 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ¬ 𝐾 ∈ (𝑁 ∖ {𝐾}))
48 eqidd 2732 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
49 iftrue 4478 . . . . . . . 8 (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵))
50 eqeq1 2735 . . . . . . . . 9 (𝑗 = (𝑄𝐾) → (𝑗 = 𝐿 ↔ (𝑄𝐾) = 𝐿))
5150ifbid 4496 . . . . . . . 8 (𝑗 = (𝑄𝐾) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
5249, 51sylan9eq 2786 . . . . . . 7 ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
5352adantl 481 . . . . . 6 (((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ (𝑖 = 𝐾𝑗 = (𝑄𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
54 simpr1 1195 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐾𝑁)
5523, 24gsummatr01lem1 22570 . . . . . . . . 9 ((𝑄𝑅𝐾𝑁) → (𝑄𝐾) ∈ 𝑁)
5655ancoms 458 . . . . . . . 8 ((𝐾𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
57563adant2 1131 . . . . . . 7 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
5857adantl 481 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑄𝐾) ∈ 𝑁)
59 gsummatr01.0 . . . . . . . 8 0 = (0g𝐺)
6059fvexi 6836 . . . . . . 7 0 ∈ V
61 simpl 482 . . . . . . 7 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐵𝑆)
62 ifexg 4522 . . . . . . 7 (( 0 ∈ V ∧ 𝐵𝑆) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ V)
6360, 61, 62sylancr 587 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ V)
6448, 53, 54, 58, 63ovmpod 7498 . . . . 5 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
6564adantll 714 . . . 4 (((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
66653adant1 1130 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
67 cmnmnd 19709 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
681, 59mndidcl 18657 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
6967, 68syl 17 . . . . . 6 (𝐺 ∈ CMnd → 0 ∈ (Base‘𝐺))
7069adantr 480 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 0 ∈ (Base‘𝐺))
71703ad2ant1 1133 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 0 ∈ (Base‘𝐺))
7233eleq2i 2823 . . . . . . 7 (𝐵𝑆𝐵 ∈ (Base‘𝐺))
7372biimpi 216 . . . . . 6 (𝐵𝑆𝐵 ∈ (Base‘𝐺))
7473adantl 481 . . . . 5 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → 𝐵 ∈ (Base‘𝐺))
75743ad2ant2 1134 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐵 ∈ (Base‘𝐺))
7671, 75ifcld 4519 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ (Base‘𝐺))
7766, 76eqeltrd 2831 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) ∈ (Base‘𝐺))
78 id 22 . . 3 (𝑛 = 𝐾𝑛 = 𝐾)
79 fveq2 6822 . . 3 (𝑛 = 𝐾 → (𝑄𝑛) = (𝑄𝐾))
8078, 79oveq12d 7364 . 2 (𝑛 = 𝐾 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)))
811, 2, 4, 7, 45, 46, 47, 77, 80gsumunsn 19872 1 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  ifcif 4472  {csn 4573  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  SymGrpcsymg 19281  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-efmnd 18777  df-mulg 18981  df-cntz 19229  df-symg 19282  df-cmn 19694
This theorem is referenced by:  gsummatr01  22574
  Copyright terms: Public domain W3C validator