MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem3 Structured version   Visualization version   GIF version

Theorem gsummatr01lem3 22546
Description: Lemma 1 for gsummatr01 22548. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01lem3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01lem3
StepHypRef Expression
1 eqid 2727 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2727 . 2 (+g𝐺) = (+g𝐺)
3 simpl 482 . . 3 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ CMnd)
433ad2ant1 1131 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐺 ∈ CMnd)
5 diffi 9195 . . . 4 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
65adantl 481 . . 3 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin)
763ad2ant1 1131 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin)
8 eqidd 2728 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
9 eqeq1 2731 . . . . . . . 8 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
109adantr 480 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
11 eqeq1 2731 . . . . . . . . 9 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
1211ifbid 4547 . . . . . . . 8 (𝑗 = (𝑄𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
1312adantl 481 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
14 oveq12 7423 . . . . . . 7 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
1510, 13, 14ifbieq12d 4552 . . . . . 6 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
16 eldifsni 4789 . . . . . . . . 9 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
1716neneqd 2940 . . . . . . . 8 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
1817iffalsed 4535 . . . . . . 7 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
1918adantl 481 . . . . . 6 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
2015, 19sylan9eqr 2789 . . . . 5 ((((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
21 eldifi 4122 . . . . . 6 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
2221adantl 481 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
23 gsummatr01.p . . . . . . . . . 10 𝑃 = (Base‘(SymGrp‘𝑁))
24 gsummatr01.r . . . . . . . . . 10 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
2523, 24gsummatr01lem1 22544 . . . . . . . . 9 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
2625expcom 413 . . . . . . . 8 (𝑛𝑁 → (𝑄𝑅 → (𝑄𝑛) ∈ 𝑁))
2726, 21syl11 33 . . . . . . 7 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄𝑛) ∈ 𝑁))
28273ad2ant3 1133 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑄𝑛) ∈ 𝑁))
2928imp 406 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
30 ovexd 7449 . . . . 5 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
318, 20, 22, 29, 30ovmpod 7567 . . . 4 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
32313ad2antl3 1185 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
33 gsummatr01.s . . . . . . . . 9 𝑆 = (Base‘𝐺)
3433eleq2i 2820 . . . . . . . 8 ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺))
35342ralbii 3123 . . . . . . 7 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺))
3623, 24gsummatr01lem2 22545 . . . . . . . . . . 11 ((𝑄𝑅𝑛𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
3721, 36sylan2 592 . . . . . . . . . 10 ((𝑄𝑅𝑛 ∈ (𝑁 ∖ {𝐾})) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
3837ex 412 . . . . . . . . 9 (𝑄𝑅 → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
39383ad2ant3 1133 . . . . . . . 8 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4039com3r 87 . . . . . . 7 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4135, 40sylbi 216 . . . . . 6 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4241adantr 480 . . . . 5 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
4342imp31 417 . . . 4 ((((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
44433adantl1 1164 . . 3 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
4532, 44eqeltrd 2828 . 2 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) ∈ (Base‘𝐺))
46 simp31 1207 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐾𝑁)
47 neldifsnd 4792 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ¬ 𝐾 ∈ (𝑁 ∖ {𝐾}))
48 eqidd 2728 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
49 iftrue 4530 . . . . . . . 8 (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵))
50 eqeq1 2731 . . . . . . . . 9 (𝑗 = (𝑄𝐾) → (𝑗 = 𝐿 ↔ (𝑄𝐾) = 𝐿))
5150ifbid 4547 . . . . . . . 8 (𝑗 = (𝑄𝐾) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
5249, 51sylan9eq 2787 . . . . . . 7 ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
5352adantl 481 . . . . . 6 (((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ (𝑖 = 𝐾𝑗 = (𝑄𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
54 simpr1 1192 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐾𝑁)
5523, 24gsummatr01lem1 22544 . . . . . . . . 9 ((𝑄𝑅𝐾𝑁) → (𝑄𝐾) ∈ 𝑁)
5655ancoms 458 . . . . . . . 8 ((𝐾𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
57563adant2 1129 . . . . . . 7 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
5857adantl 481 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑄𝐾) ∈ 𝑁)
59 gsummatr01.0 . . . . . . . 8 0 = (0g𝐺)
6059fvexi 6905 . . . . . . 7 0 ∈ V
61 simpl 482 . . . . . . 7 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐵𝑆)
62 ifexg 4573 . . . . . . 7 (( 0 ∈ V ∧ 𝐵𝑆) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ V)
6360, 61, 62sylancr 586 . . . . . 6 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ V)
6448, 53, 54, 58, 63ovmpod 7567 . . . . 5 ((𝐵𝑆 ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
6564adantll 713 . . . 4 (((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
66653adant1 1128 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = if((𝑄𝐾) = 𝐿, 0 , 𝐵))
67 cmnmnd 19743 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
681, 59mndidcl 18700 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
6967, 68syl 17 . . . . . 6 (𝐺 ∈ CMnd → 0 ∈ (Base‘𝐺))
7069adantr 480 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 0 ∈ (Base‘𝐺))
71703ad2ant1 1131 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 0 ∈ (Base‘𝐺))
7233eleq2i 2820 . . . . . . 7 (𝐵𝑆𝐵 ∈ (Base‘𝐺))
7372biimpi 215 . . . . . 6 (𝐵𝑆𝐵 ∈ (Base‘𝐺))
7473adantl 481 . . . . 5 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → 𝐵 ∈ (Base‘𝐺))
75743ad2ant2 1132 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐵 ∈ (Base‘𝐺))
7671, 75ifcld 4570 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → if((𝑄𝐾) = 𝐿, 0 , 𝐵) ∈ (Base‘𝐺))
7766, 76eqeltrd 2828 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) ∈ (Base‘𝐺))
78 id 22 . . 3 (𝑛 = 𝐾𝑛 = 𝐾)
79 fveq2 6891 . . 3 (𝑛 = 𝐾 → (𝑄𝑛) = (𝑄𝐾))
8078, 79oveq12d 7432 . 2 (𝑛 = 𝐾 → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)))
811, 2, 4, 7, 45, 46, 47, 77, 80gsumunsn 19906 1 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  {crab 3427  Vcvv 3469  cdif 3941  cun 3942  ifcif 4524  {csn 4624  cmpt 5225  cfv 6542  (class class class)co 7414  cmpo 7416  Fincfn 8955  Basecbs 17171  +gcplusg 17224  0gc0g 17412   Σg cgsu 17413  Mndcmnd 18685  SymGrpcsymg 19312  CMndccmn 19726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-tset 17243  df-0g 17414  df-gsum 17415  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-submnd 18732  df-efmnd 18812  df-mulg 19015  df-cntz 19259  df-symg 19313  df-cmn 19728
This theorem is referenced by:  gsummatr01  22548
  Copyright terms: Public domain W3C validator