MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfv Structured version   Visualization version   GIF version

Theorem pmtrfv 19041
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfv (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))

Proof of Theorem pmtrfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19040 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
32fveq1d 6770 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
43adantr 480 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
5 eqid 2739 . . 3 (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
6 eleq1 2827 . . . 4 (𝑧 = 𝑍 → (𝑧𝑃𝑍𝑃))
7 sneq 4576 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87difeq2d 4061 . . . . 5 (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
98unieqd 4858 . . . 4 (𝑧 = 𝑍 (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
10 id 22 . . . 4 (𝑧 = 𝑍𝑧 = 𝑍)
116, 9, 10ifbieq12d 4492 . . 3 (𝑧 = 𝑍 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
12 simpr 484 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑍𝐷)
13 simpl3 1191 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑃 ≈ 2o)
14 relen 8712 . . . . . 6 Rel ≈
1514brrelex1i 5642 . . . . 5 (𝑃 ≈ 2o𝑃 ∈ V)
16 difexg 5254 . . . . 5 (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
17 uniexg 7584 . . . . 5 ((𝑃 ∖ {𝑍}) ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
1813, 15, 16, 174syl 19 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → (𝑃 ∖ {𝑍}) ∈ V)
19 ifexg 4513 . . . 4 (( (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
2018, 19sylancom 587 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
215, 11, 12, 20fvmptd3 6892 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
224, 21eqtrd 2779 1 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  cdif 3888  wss 3891  ifcif 4464  {csn 4566   cuni 4844   class class class wbr 5078  cmpt 5161  cfv 6430  2oc2o 8275  cen 8704  pmTrspcpmtr 19030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-en 8708  df-pmtr 19031
This theorem is referenced by:  pmtrprfv  19042  pmtrprfv3  19043  pmtrmvd  19045  pmtrffv  19048
  Copyright terms: Public domain W3C validator