| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrfv | Structured version Visualization version GIF version | ||
| Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrfv | ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | . . . . 5 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | 1 | pmtrval 19348 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| 3 | 2 | fveq1d 6828 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
| 4 | 3 | adantr 480 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
| 5 | eqid 2729 | . . 3 ⊢ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) | |
| 6 | eleq1 2816 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ 𝑃 ↔ 𝑍 ∈ 𝑃)) | |
| 7 | sneq 4589 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
| 8 | 7 | difeq2d 4079 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍})) |
| 9 | 8 | unieqd 4874 | . . . 4 ⊢ (𝑧 = 𝑍 → ∪ (𝑃 ∖ {𝑧}) = ∪ (𝑃 ∖ {𝑍})) |
| 10 | id 22 | . . . 4 ⊢ (𝑧 = 𝑍 → 𝑧 = 𝑍) | |
| 11 | 6, 9, 10 | ifbieq12d 4507 | . . 3 ⊢ (𝑧 = 𝑍 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| 12 | simpr 484 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑍 ∈ 𝐷) | |
| 13 | simpl3 1194 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑃 ≈ 2o) | |
| 14 | relen 8884 | . . . . . 6 ⊢ Rel ≈ | |
| 15 | 14 | brrelex1i 5679 | . . . . 5 ⊢ (𝑃 ≈ 2o → 𝑃 ∈ V) |
| 16 | difexg 5271 | . . . . 5 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V) | |
| 17 | uniexg 7680 | . . . . 5 ⊢ ((𝑃 ∖ {𝑍}) ∈ V → ∪ (𝑃 ∖ {𝑍}) ∈ V) | |
| 18 | 13, 15, 16, 17 | 4syl 19 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ∪ (𝑃 ∖ {𝑍}) ∈ V) |
| 19 | ifexg 4528 | . . . 4 ⊢ ((∪ (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) | |
| 20 | 18, 19 | sylancom 588 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) |
| 21 | 5, 11, 12, 20 | fvmptd3 6957 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| 22 | 4, 21 | eqtrd 2764 | 1 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 ifcif 4478 {csn 4579 ∪ cuni 4861 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 2oc2o 8389 ≈ cen 8876 pmTrspcpmtr 19338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-en 8880 df-pmtr 19339 |
| This theorem is referenced by: pmtrprfv 19350 pmtrprfv3 19351 pmtrmvd 19353 pmtrffv 19356 |
| Copyright terms: Public domain | W3C validator |