MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfv Structured version   Visualization version   GIF version

Theorem pmtrfv 19388
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfv (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))

Proof of Theorem pmtrfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19387 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
32fveq1d 6867 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
43adantr 480 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
5 eqid 2730 . . 3 (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
6 eleq1 2817 . . . 4 (𝑧 = 𝑍 → (𝑧𝑃𝑍𝑃))
7 sneq 4607 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87difeq2d 4097 . . . . 5 (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
98unieqd 4892 . . . 4 (𝑧 = 𝑍 (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
10 id 22 . . . 4 (𝑧 = 𝑍𝑧 = 𝑍)
116, 9, 10ifbieq12d 4525 . . 3 (𝑧 = 𝑍 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
12 simpr 484 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑍𝐷)
13 simpl3 1194 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑃 ≈ 2o)
14 relen 8927 . . . . . 6 Rel ≈
1514brrelex1i 5702 . . . . 5 (𝑃 ≈ 2o𝑃 ∈ V)
16 difexg 5292 . . . . 5 (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
17 uniexg 7723 . . . . 5 ((𝑃 ∖ {𝑍}) ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
1813, 15, 16, 174syl 19 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → (𝑃 ∖ {𝑍}) ∈ V)
19 ifexg 4546 . . . 4 (( (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
2018, 19sylancom 588 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
215, 11, 12, 20fvmptd3 6998 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
224, 21eqtrd 2765 1 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3455  cdif 3919  wss 3922  ifcif 4496  {csn 4597   cuni 4879   class class class wbr 5115  cmpt 5196  cfv 6519  2oc2o 8437  cen 8919  pmTrspcpmtr 19377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-en 8923  df-pmtr 19378
This theorem is referenced by:  pmtrprfv  19389  pmtrprfv3  19390  pmtrmvd  19392  pmtrffv  19395
  Copyright terms: Public domain W3C validator