Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrfv | Structured version Visualization version GIF version |
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrfv | ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrfval.t | . . . . 5 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | 1 | pmtrval 19040 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
3 | 2 | fveq1d 6770 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
4 | 3 | adantr 480 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
5 | eqid 2739 | . . 3 ⊢ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) | |
6 | eleq1 2827 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ 𝑃 ↔ 𝑍 ∈ 𝑃)) | |
7 | sneq 4576 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
8 | 7 | difeq2d 4061 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍})) |
9 | 8 | unieqd 4858 | . . . 4 ⊢ (𝑧 = 𝑍 → ∪ (𝑃 ∖ {𝑧}) = ∪ (𝑃 ∖ {𝑍})) |
10 | id 22 | . . . 4 ⊢ (𝑧 = 𝑍 → 𝑧 = 𝑍) | |
11 | 6, 9, 10 | ifbieq12d 4492 | . . 3 ⊢ (𝑧 = 𝑍 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
12 | simpr 484 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑍 ∈ 𝐷) | |
13 | simpl3 1191 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑃 ≈ 2o) | |
14 | relen 8712 | . . . . . 6 ⊢ Rel ≈ | |
15 | 14 | brrelex1i 5642 | . . . . 5 ⊢ (𝑃 ≈ 2o → 𝑃 ∈ V) |
16 | difexg 5254 | . . . . 5 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V) | |
17 | uniexg 7584 | . . . . 5 ⊢ ((𝑃 ∖ {𝑍}) ∈ V → ∪ (𝑃 ∖ {𝑍}) ∈ V) | |
18 | 13, 15, 16, 17 | 4syl 19 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ∪ (𝑃 ∖ {𝑍}) ∈ V) |
19 | ifexg 4513 | . . . 4 ⊢ ((∪ (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) | |
20 | 18, 19 | sylancom 587 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) |
21 | 5, 11, 12, 20 | fvmptd3 6892 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
22 | 4, 21 | eqtrd 2779 | 1 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 ⊆ wss 3891 ifcif 4464 {csn 4566 ∪ cuni 4844 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 2oc2o 8275 ≈ cen 8704 pmTrspcpmtr 19030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-en 8708 df-pmtr 19031 |
This theorem is referenced by: pmtrprfv 19042 pmtrprfv3 19043 pmtrmvd 19045 pmtrffv 19048 |
Copyright terms: Public domain | W3C validator |