![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrfv | Structured version Visualization version GIF version |
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrfv | ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrfval.t | . . . . 5 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | 1 | pmtrval 19318 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
3 | 2 | fveq1d 6893 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
4 | 3 | adantr 481 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
5 | eqid 2732 | . . 3 ⊢ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) | |
6 | eleq1 2821 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ 𝑃 ↔ 𝑍 ∈ 𝑃)) | |
7 | sneq 4638 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
8 | 7 | difeq2d 4122 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍})) |
9 | 8 | unieqd 4922 | . . . 4 ⊢ (𝑧 = 𝑍 → ∪ (𝑃 ∖ {𝑧}) = ∪ (𝑃 ∖ {𝑍})) |
10 | id 22 | . . . 4 ⊢ (𝑧 = 𝑍 → 𝑧 = 𝑍) | |
11 | 6, 9, 10 | ifbieq12d 4556 | . . 3 ⊢ (𝑧 = 𝑍 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
12 | simpr 485 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑍 ∈ 𝐷) | |
13 | simpl3 1193 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑃 ≈ 2o) | |
14 | relen 8943 | . . . . . 6 ⊢ Rel ≈ | |
15 | 14 | brrelex1i 5732 | . . . . 5 ⊢ (𝑃 ≈ 2o → 𝑃 ∈ V) |
16 | difexg 5327 | . . . . 5 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V) | |
17 | uniexg 7729 | . . . . 5 ⊢ ((𝑃 ∖ {𝑍}) ∈ V → ∪ (𝑃 ∖ {𝑍}) ∈ V) | |
18 | 13, 15, 16, 17 | 4syl 19 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ∪ (𝑃 ∖ {𝑍}) ∈ V) |
19 | ifexg 4577 | . . . 4 ⊢ ((∪ (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) | |
20 | 18, 19 | sylancom 588 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) |
21 | 5, 11, 12, 20 | fvmptd3 7021 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
22 | 4, 21 | eqtrd 2772 | 1 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 ifcif 4528 {csn 4628 ∪ cuni 4908 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 2oc2o 8459 ≈ cen 8935 pmTrspcpmtr 19308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-en 8939 df-pmtr 19309 |
This theorem is referenced by: pmtrprfv 19320 pmtrprfv3 19321 pmtrmvd 19323 pmtrffv 19326 |
Copyright terms: Public domain | W3C validator |