MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfv Structured version   Visualization version   GIF version

Theorem pmtrfv 19366
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfv (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))

Proof of Theorem pmtrfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19365 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
32fveq1d 6830 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
43adantr 480 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
5 eqid 2733 . . 3 (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
6 eleq1 2821 . . . 4 (𝑧 = 𝑍 → (𝑧𝑃𝑍𝑃))
7 sneq 4585 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87difeq2d 4075 . . . . 5 (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
98unieqd 4871 . . . 4 (𝑧 = 𝑍 (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
10 id 22 . . . 4 (𝑧 = 𝑍𝑧 = 𝑍)
116, 9, 10ifbieq12d 4503 . . 3 (𝑧 = 𝑍 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
12 simpr 484 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑍𝐷)
13 simpl3 1194 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑃 ≈ 2o)
14 relen 8880 . . . . . 6 Rel ≈
1514brrelex1i 5675 . . . . 5 (𝑃 ≈ 2o𝑃 ∈ V)
16 difexg 5269 . . . . 5 (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
17 uniexg 7679 . . . . 5 ((𝑃 ∖ {𝑍}) ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
1813, 15, 16, 174syl 19 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → (𝑃 ∖ {𝑍}) ∈ V)
19 ifexg 4524 . . . 4 (( (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
2018, 19sylancom 588 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
215, 11, 12, 20fvmptd3 6958 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
224, 21eqtrd 2768 1 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  wss 3898  ifcif 4474  {csn 4575   cuni 4858   class class class wbr 5093  cmpt 5174  cfv 6486  2oc2o 8385  cen 8872  pmTrspcpmtr 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-en 8876  df-pmtr 19356
This theorem is referenced by:  pmtrprfv  19367  pmtrprfv3  19368  pmtrmvd  19370  pmtrffv  19373
  Copyright terms: Public domain W3C validator