MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfv Structured version   Visualization version   GIF version

Theorem pmtrfv 18975
Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrfv (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))

Proof of Theorem pmtrfv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
21pmtrval 18974 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
32fveq1d 6758 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
43adantr 480 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍))
5 eqid 2738 . . 3 (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
6 eleq1 2826 . . . 4 (𝑧 = 𝑍 → (𝑧𝑃𝑍𝑃))
7 sneq 4568 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87difeq2d 4053 . . . . 5 (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
98unieqd 4850 . . . 4 (𝑧 = 𝑍 (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍}))
10 id 22 . . . 4 (𝑧 = 𝑍𝑧 = 𝑍)
116, 9, 10ifbieq12d 4484 . . 3 (𝑧 = 𝑍 → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
12 simpr 484 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑍𝐷)
13 simpl3 1191 . . . . 5 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → 𝑃 ≈ 2o)
14 relen 8696 . . . . . 6 Rel ≈
1514brrelex1i 5634 . . . . 5 (𝑃 ≈ 2o𝑃 ∈ V)
16 difexg 5246 . . . . 5 (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
17 uniexg 7571 . . . . 5 ((𝑃 ∖ {𝑍}) ∈ V → (𝑃 ∖ {𝑍}) ∈ V)
1813, 15, 16, 174syl 19 . . . 4 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → (𝑃 ∖ {𝑍}) ∈ V)
19 ifexg 4505 . . . 4 (( (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
2018, 19sylancom 587 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍) ∈ V)
215, 11, 12, 20fvmptd3 6880 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
224, 21eqtrd 2778 1 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑍𝐷) → ((𝑇𝑃)‘𝑍) = if(𝑍𝑃, (𝑃 ∖ {𝑍}), 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153  cfv 6418  2oc2o 8261  cen 8688  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-en 8692  df-pmtr 18965
This theorem is referenced by:  pmtrprfv  18976  pmtrprfv3  18977  pmtrmvd  18979  pmtrffv  18982
  Copyright terms: Public domain W3C validator