| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrfv | Structured version Visualization version GIF version | ||
| Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrfv | ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | . . . . 5 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | 1 | pmtrval 19361 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| 3 | 2 | fveq1d 6824 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
| 4 | 3 | adantr 480 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍)) |
| 5 | eqid 2731 | . . 3 ⊢ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) | |
| 6 | eleq1 2819 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ 𝑃 ↔ 𝑍 ∈ 𝑃)) | |
| 7 | sneq 4586 | . . . . . 6 ⊢ (𝑧 = 𝑍 → {𝑧} = {𝑍}) | |
| 8 | 7 | difeq2d 4076 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑃 ∖ {𝑧}) = (𝑃 ∖ {𝑍})) |
| 9 | 8 | unieqd 4872 | . . . 4 ⊢ (𝑧 = 𝑍 → ∪ (𝑃 ∖ {𝑧}) = ∪ (𝑃 ∖ {𝑍})) |
| 10 | id 22 | . . . 4 ⊢ (𝑧 = 𝑍 → 𝑧 = 𝑍) | |
| 11 | 6, 9, 10 | ifbieq12d 4504 | . . 3 ⊢ (𝑧 = 𝑍 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| 12 | simpr 484 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑍 ∈ 𝐷) | |
| 13 | simpl3 1194 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → 𝑃 ≈ 2o) | |
| 14 | relen 8874 | . . . . . 6 ⊢ Rel ≈ | |
| 15 | 14 | brrelex1i 5672 | . . . . 5 ⊢ (𝑃 ≈ 2o → 𝑃 ∈ V) |
| 16 | difexg 5267 | . . . . 5 ⊢ (𝑃 ∈ V → (𝑃 ∖ {𝑍}) ∈ V) | |
| 17 | uniexg 7673 | . . . . 5 ⊢ ((𝑃 ∖ {𝑍}) ∈ V → ∪ (𝑃 ∖ {𝑍}) ∈ V) | |
| 18 | 13, 15, 16, 17 | 4syl 19 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ∪ (𝑃 ∖ {𝑍}) ∈ V) |
| 19 | ifexg 4525 | . . . 4 ⊢ ((∪ (𝑃 ∖ {𝑍}) ∈ V ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) | |
| 20 | 18, 19 | sylancom 588 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍) ∈ V) |
| 21 | 5, 11, 12, 20 | fvmptd3 6952 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| 22 | 4, 21 | eqtrd 2766 | 1 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑍 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑍) = if(𝑍 ∈ 𝑃, ∪ (𝑃 ∖ {𝑍}), 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 ifcif 4475 {csn 4576 ∪ cuni 4859 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 2oc2o 8379 ≈ cen 8866 pmTrspcpmtr 19351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-en 8870 df-pmtr 19352 |
| This theorem is referenced by: pmtrprfv 19363 pmtrprfv3 19364 pmtrmvd 19366 pmtrffv 19369 |
| Copyright terms: Public domain | W3C validator |