MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem1 Structured version   Visualization version   GIF version

Theorem cantnfp1lem1 9638
Description: Lemma for cantnfp1 9641. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnfp1lem1 (𝜑𝐹𝑆)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem cantnfp1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfp1.y . . . . 5 (𝜑𝑌𝐴)
21adantr 480 . . . 4 ((𝜑𝑡𝐵) → 𝑌𝐴)
3 cantnfp1.g . . . . . . 7 (𝜑𝐺𝑆)
4 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
74, 5, 6cantnfs 9626 . . . . . . 7 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
83, 7mpbid 232 . . . . . 6 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 494 . . . . 5 (𝜑𝐺:𝐵𝐴)
109ffvelcdmda 7059 . . . 4 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
112, 10ifcld 4538 . . 3 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
12 cantnfp1.f . . 3 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1311, 12fmptd 7089 . 2 (𝜑𝐹:𝐵𝐴)
148simprd 495 . . . . . 6 (𝜑𝐺 finSupp ∅)
1514fsuppimpd 9327 . . . . 5 (𝜑 → (𝐺 supp ∅) ∈ Fin)
16 snfi 9017 . . . . 5 {𝑋} ∈ Fin
17 unfi 9141 . . . . 5 (((𝐺 supp ∅) ∈ Fin ∧ {𝑋} ∈ Fin) → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
1815, 16, 17sylancl 586 . . . 4 (𝜑 → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
19 eqeq1 2734 . . . . . . . 8 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
20 fveq2 6861 . . . . . . . 8 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
2119, 20ifbieq2d 4518 . . . . . . 7 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
22 eldifi 4097 . . . . . . . 8 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
2322adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
241adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
25 fvex 6874 . . . . . . . 8 (𝐺𝑘) ∈ V
26 ifexg 4541 . . . . . . . 8 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2724, 25, 26sylancl 586 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2812, 21, 23, 27fvmptd3 6994 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
29 eldifn 4098 . . . . . . . . 9 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3029adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
31 velsn 4608 . . . . . . . . 9 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
32 elun2 4149 . . . . . . . . 9 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3331, 32sylbir 235 . . . . . . . 8 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3430, 33nsyl 140 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
3534iffalsed 4502 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
36 ssun1 4144 . . . . . . . . 9 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
37 sscon 4109 . . . . . . . . 9 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
3836, 37ax-mp 5 . . . . . . . 8 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
3938sseli 3945 . . . . . . 7 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
40 ssidd 3973 . . . . . . . 8 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
41 0ex 5265 . . . . . . . . 9 ∅ ∈ V
4241a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
439, 40, 6, 42suppssr 8177 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
4439, 43sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
4528, 35, 443eqtrd 2769 . . . . 5 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
4613, 45suppss 8176 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
4718, 46ssfid 9219 . . 3 (𝜑 → (𝐹 supp ∅) ∈ Fin)
4812funmpt2 6558 . . . 4 Fun 𝐹
49 mptexg 7198 . . . . . 6 (𝐵 ∈ On → (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡))) ∈ V)
5012, 49eqeltrid 2833 . . . . 5 (𝐵 ∈ On → 𝐹 ∈ V)
516, 50syl 17 . . . 4 (𝜑𝐹 ∈ V)
52 funisfsupp 9325 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5348, 51, 42, 52mp3an2i 1468 . . 3 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5447, 53mpbird 257 . 2 (𝜑𝐹 finSupp ∅)
554, 5, 6cantnfs 9626 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
5613, 54, 55mpbir2and 713 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  cun 3915  wss 3917  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  Oncon0 6335  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142  Fincfn 8921   finSupp cfsupp 9319   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-map 8804  df-en 8922  df-fin 8925  df-fsupp 9320  df-cnf 9622
This theorem is referenced by:  cantnfp1lem2  9639  cantnfp1lem3  9640  cantnfp1  9641
  Copyright terms: Public domain W3C validator