MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem1 Structured version   Visualization version   GIF version

Theorem cantnfp1lem1 9129
Description: Lemma for cantnfp1 9132. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnfp1lem1 (𝜑𝐹𝑆)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem cantnfp1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfp1.y . . . . 5 (𝜑𝑌𝐴)
21adantr 484 . . . 4 ((𝜑𝑡𝐵) → 𝑌𝐴)
3 cantnfp1.g . . . . . . 7 (𝜑𝐺𝑆)
4 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
74, 5, 6cantnfs 9117 . . . . . . 7 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
83, 7mpbid 235 . . . . . 6 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 498 . . . . 5 (𝜑𝐺:𝐵𝐴)
109ffvelrnda 6832 . . . 4 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
112, 10ifcld 4473 . . 3 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
12 cantnfp1.f . . 3 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1311, 12fmptd 6859 . 2 (𝜑𝐹:𝐵𝐴)
148simprd 499 . . . . . 6 (𝜑𝐺 finSupp ∅)
1514fsuppimpd 8828 . . . . 5 (𝜑 → (𝐺 supp ∅) ∈ Fin)
16 snfi 8581 . . . . 5 {𝑋} ∈ Fin
17 unfi 8773 . . . . 5 (((𝐺 supp ∅) ∈ Fin ∧ {𝑋} ∈ Fin) → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
1815, 16, 17sylancl 589 . . . 4 (𝜑 → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
19 eqeq1 2805 . . . . . . . 8 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
20 fveq2 6649 . . . . . . . 8 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
2119, 20ifbieq2d 4453 . . . . . . 7 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
22 eldifi 4057 . . . . . . . 8 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
2322adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
241adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
25 fvex 6662 . . . . . . . 8 (𝐺𝑘) ∈ V
26 ifexg 4475 . . . . . . . 8 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2724, 25, 26sylancl 589 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2812, 21, 23, 27fvmptd3 6772 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
29 eldifn 4058 . . . . . . . . 9 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3029adantl 485 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
31 velsn 4544 . . . . . . . . 9 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
32 elun2 4107 . . . . . . . . 9 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3331, 32sylbir 238 . . . . . . . 8 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3430, 33nsyl 142 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
3534iffalsed 4439 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
36 ssun1 4102 . . . . . . . . 9 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
37 sscon 4069 . . . . . . . . 9 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
3836, 37ax-mp 5 . . . . . . . 8 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
3938sseli 3914 . . . . . . 7 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
40 ssidd 3941 . . . . . . . 8 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
41 0ex 5178 . . . . . . . . 9 ∅ ∈ V
4241a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
439, 40, 6, 42suppssr 7848 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
4439, 43sylan2 595 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
4528, 35, 443eqtrd 2840 . . . . 5 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
4613, 45suppss 7847 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
4718, 46ssfid 8729 . . 3 (𝜑 → (𝐹 supp ∅) ∈ Fin)
4812funmpt2 6367 . . . 4 Fun 𝐹
49 mptexg 6965 . . . . . 6 (𝐵 ∈ On → (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡))) ∈ V)
5012, 49eqeltrid 2897 . . . . 5 (𝐵 ∈ On → 𝐹 ∈ V)
516, 50syl 17 . . . 4 (𝜑𝐹 ∈ V)
52 funisfsupp 8826 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5348, 51, 42, 52mp3an2i 1463 . . 3 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5447, 53mpbird 260 . 2 (𝜑𝐹 finSupp ∅)
554, 5, 6cantnfs 9117 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
5613, 54, 55mpbir2and 712 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  cdif 3881  cun 3882  wss 3884  c0 4246  ifcif 4428  {csn 4528   class class class wbr 5033  cmpt 5113  dom cdm 5523  Oncon0 6163  Fun wfun 6322  wf 6324  cfv 6328  (class class class)co 7139   supp csupp 7817  Fincfn 8496   finSupp cfsupp 8821   CNF ccnf 9112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-seqom 8071  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-fin 8500  df-fsupp 8822  df-cnf 9113
This theorem is referenced by:  cantnfp1lem2  9130  cantnfp1lem3  9131  cantnfp1  9132
  Copyright terms: Public domain W3C validator