MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem1 Structured version   Visualization version   GIF version

Theorem cantnfp1lem1 9622
Description: Lemma for cantnfp1 9625. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by AV, 30-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
Assertion
Ref Expression
cantnfp1lem1 (𝜑𝐹𝑆)
Distinct variable groups:   𝑡,𝐵   𝑡,𝐴   𝑡,𝑆   𝑡,𝐺   𝜑,𝑡   𝑡,𝑌   𝑡,𝑋
Allowed substitution hint:   𝐹(𝑡)

Proof of Theorem cantnfp1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cantnfp1.y . . . . 5 (𝜑𝑌𝐴)
21adantr 482 . . . 4 ((𝜑𝑡𝐵) → 𝑌𝐴)
3 cantnfp1.g . . . . . . 7 (𝜑𝐺𝑆)
4 cantnfs.s . . . . . . . 8 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . 8 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . 8 (𝜑𝐵 ∈ On)
74, 5, 6cantnfs 9610 . . . . . . 7 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
83, 7mpbid 231 . . . . . 6 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
98simpld 496 . . . . 5 (𝜑𝐺:𝐵𝐴)
109ffvelcdmda 7039 . . . 4 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
112, 10ifcld 4536 . . 3 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
12 cantnfp1.f . . 3 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
1311, 12fmptd 7066 . 2 (𝜑𝐹:𝐵𝐴)
148simprd 497 . . . . . 6 (𝜑𝐺 finSupp ∅)
1514fsuppimpd 9319 . . . . 5 (𝜑 → (𝐺 supp ∅) ∈ Fin)
16 snfi 8994 . . . . 5 {𝑋} ∈ Fin
17 unfi 9122 . . . . 5 (((𝐺 supp ∅) ∈ Fin ∧ {𝑋} ∈ Fin) → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
1815, 16, 17sylancl 587 . . . 4 (𝜑 → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin)
19 eqeq1 2737 . . . . . . . 8 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
20 fveq2 6846 . . . . . . . 8 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
2119, 20ifbieq2d 4516 . . . . . . 7 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
22 eldifi 4090 . . . . . . . 8 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
2322adantl 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
241adantr 482 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
25 fvex 6859 . . . . . . . 8 (𝐺𝑘) ∈ V
26 ifexg 4539 . . . . . . . 8 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2724, 25, 26sylancl 587 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2812, 21, 23, 27fvmptd3 6975 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
29 eldifn 4091 . . . . . . . . 9 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3029adantl 483 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
31 velsn 4606 . . . . . . . . 9 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
32 elun2 4141 . . . . . . . . 9 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3331, 32sylbir 234 . . . . . . . 8 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
3430, 33nsyl 140 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
3534iffalsed 4501 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
36 ssun1 4136 . . . . . . . . 9 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
37 sscon 4102 . . . . . . . . 9 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
3836, 37ax-mp 5 . . . . . . . 8 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
3938sseli 3944 . . . . . . 7 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
40 ssidd 3971 . . . . . . . 8 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
41 0ex 5268 . . . . . . . . 9 ∅ ∈ V
4241a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
439, 40, 6, 42suppssr 8131 . . . . . . 7 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
4439, 43sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
4528, 35, 443eqtrd 2777 . . . . 5 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
4613, 45suppss 8129 . . . 4 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
4718, 46ssfid 9217 . . 3 (𝜑 → (𝐹 supp ∅) ∈ Fin)
4812funmpt2 6544 . . . 4 Fun 𝐹
49 mptexg 7175 . . . . . 6 (𝐵 ∈ On → (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡))) ∈ V)
5012, 49eqeltrid 2838 . . . . 5 (𝐵 ∈ On → 𝐹 ∈ V)
516, 50syl 17 . . . 4 (𝜑𝐹 ∈ V)
52 funisfsupp 9317 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5348, 51, 42, 52mp3an2i 1467 . . 3 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5447, 53mpbird 257 . 2 (𝜑𝐹 finSupp ∅)
554, 5, 6cantnfs 9610 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
5613, 54, 55mpbir2and 712 1 (𝜑𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4286  ifcif 4490  {csn 4590   class class class wbr 5109  cmpt 5192  dom cdm 5637  Oncon0 6321  Fun wfun 6494  wf 6496  cfv 6500  (class class class)co 7361   supp csupp 8096  Fincfn 8889   finSupp cfsupp 9311   CNF ccnf 9605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-seqom 8398  df-1o 8416  df-map 8773  df-en 8890  df-fin 8893  df-fsupp 9312  df-cnf 9606
This theorem is referenced by:  cantnfp1lem2  9623  cantnfp1lem3  9624  cantnfp1  9625
  Copyright terms: Public domain W3C validator