| Step | Hyp | Ref
| Expression |
| 1 | | cantnfp1.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑌 ∈ 𝐴) |
| 3 | | cantnfp1.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
| 4 | | cantnfs.s |
. . . . . . . 8
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| 5 | | cantnfs.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ On) |
| 6 | | cantnfs.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ On) |
| 7 | 4, 5, 6 | cantnfs 9706 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
| 8 | 3, 7 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
| 9 | 8 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 10 | 9 | ffvelcdmda 7104 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝐺‘𝑡) ∈ 𝐴) |
| 11 | 2, 10 | ifcld 4572 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) ∈ 𝐴) |
| 12 | | cantnfp1.f |
. . 3
⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) |
| 13 | 11, 12 | fmptd 7134 |
. 2
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 14 | 8 | simprd 495 |
. . . . . 6
⊢ (𝜑 → 𝐺 finSupp ∅) |
| 15 | 14 | fsuppimpd 9409 |
. . . . 5
⊢ (𝜑 → (𝐺 supp ∅) ∈ Fin) |
| 16 | | snfi 9083 |
. . . . 5
⊢ {𝑋} ∈ Fin |
| 17 | | unfi 9211 |
. . . . 5
⊢ (((𝐺 supp ∅) ∈ Fin ∧
{𝑋} ∈ Fin) →
((𝐺 supp ∅) ∪
{𝑋}) ∈
Fin) |
| 18 | 15, 16, 17 | sylancl 586 |
. . . 4
⊢ (𝜑 → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin) |
| 19 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑡 = 𝑘 → (𝑡 = 𝑋 ↔ 𝑘 = 𝑋)) |
| 20 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑡 = 𝑘 → (𝐺‘𝑡) = (𝐺‘𝑘)) |
| 21 | 19, 20 | ifbieq2d 4552 |
. . . . . . 7
⊢ (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘))) |
| 22 | | eldifi 4131 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ 𝐵) |
| 23 | 22 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘 ∈ 𝐵) |
| 24 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌 ∈ 𝐴) |
| 25 | | fvex 6919 |
. . . . . . . 8
⊢ (𝐺‘𝑘) ∈ V |
| 26 | | ifexg 4575 |
. . . . . . . 8
⊢ ((𝑌 ∈ 𝐴 ∧ (𝐺‘𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) ∈ V) |
| 27 | 24, 25, 26 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) ∈ V) |
| 28 | 12, 21, 23, 27 | fvmptd3 7039 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹‘𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘))) |
| 29 | | eldifn 4132 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
| 30 | 29 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
| 31 | | velsn 4642 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋) |
| 32 | | elun2 4183 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
| 33 | 31, 32 | sylbir 235 |
. . . . . . . 8
⊢ (𝑘 = 𝑋 → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
| 34 | 30, 33 | nsyl 140 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋) |
| 35 | 34 | iffalsed 4536 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) = (𝐺‘𝑘)) |
| 36 | | ssun1 4178 |
. . . . . . . . 9
⊢ (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) |
| 37 | | sscon 4143 |
. . . . . . . . 9
⊢ ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)) |
| 39 | 38 | sseli 3979 |
. . . . . . 7
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) |
| 40 | | ssidd 4007 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅)) |
| 41 | | 0ex 5307 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 42 | 41 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈
V) |
| 43 | 9, 40, 6, 42 | suppssr 8220 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺‘𝑘) = ∅) |
| 44 | 39, 43 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺‘𝑘) = ∅) |
| 45 | 28, 35, 44 | 3eqtrd 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹‘𝑘) = ∅) |
| 46 | 13, 45 | suppss 8219 |
. . . 4
⊢ (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})) |
| 47 | 18, 46 | ssfid 9301 |
. . 3
⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
| 48 | 12 | funmpt2 6605 |
. . . 4
⊢ Fun 𝐹 |
| 49 | | mptexg 7241 |
. . . . . 6
⊢ (𝐵 ∈ On → (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) ∈ V) |
| 50 | 12, 49 | eqeltrid 2845 |
. . . . 5
⊢ (𝐵 ∈ On → 𝐹 ∈ V) |
| 51 | 6, 50 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ V) |
| 52 | | funisfsupp 9407 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ V ∧ ∅ ∈ V) →
(𝐹 finSupp ∅ ↔
(𝐹 supp ∅) ∈
Fin)) |
| 53 | 48, 51, 42, 52 | mp3an2i 1468 |
. . 3
⊢ (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin)) |
| 54 | 47, 53 | mpbird 257 |
. 2
⊢ (𝜑 → 𝐹 finSupp ∅) |
| 55 | 4, 5, 6 | cantnfs 9706 |
. 2
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 56 | 13, 54, 55 | mpbir2and 713 |
1
⊢ (𝜑 → 𝐹 ∈ 𝑆) |