Step | Hyp | Ref
| Expression |
1 | | cantnfp1.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑌 ∈ 𝐴) |
3 | | cantnfp1.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
4 | | cantnfs.s |
. . . . . . . 8
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
5 | | cantnfs.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ On) |
6 | | cantnfs.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ On) |
7 | 4, 5, 6 | cantnfs 9424 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
8 | 3, 7 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
9 | 8 | simpld 495 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
10 | 9 | ffvelrnda 6961 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝐺‘𝑡) ∈ 𝐴) |
11 | 2, 10 | ifcld 4505 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) ∈ 𝐴) |
12 | | cantnfp1.f |
. . 3
⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) |
13 | 11, 12 | fmptd 6988 |
. 2
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
14 | 8 | simprd 496 |
. . . . . 6
⊢ (𝜑 → 𝐺 finSupp ∅) |
15 | 14 | fsuppimpd 9135 |
. . . . 5
⊢ (𝜑 → (𝐺 supp ∅) ∈ Fin) |
16 | | snfi 8834 |
. . . . 5
⊢ {𝑋} ∈ Fin |
17 | | unfi 8955 |
. . . . 5
⊢ (((𝐺 supp ∅) ∈ Fin ∧
{𝑋} ∈ Fin) →
((𝐺 supp ∅) ∪
{𝑋}) ∈
Fin) |
18 | 15, 16, 17 | sylancl 586 |
. . . 4
⊢ (𝜑 → ((𝐺 supp ∅) ∪ {𝑋}) ∈ Fin) |
19 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑡 = 𝑘 → (𝑡 = 𝑋 ↔ 𝑘 = 𝑋)) |
20 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑡 = 𝑘 → (𝐺‘𝑡) = (𝐺‘𝑘)) |
21 | 19, 20 | ifbieq2d 4485 |
. . . . . . 7
⊢ (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘))) |
22 | | eldifi 4061 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ 𝐵) |
23 | 22 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘 ∈ 𝐵) |
24 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌 ∈ 𝐴) |
25 | | fvex 6787 |
. . . . . . . 8
⊢ (𝐺‘𝑘) ∈ V |
26 | | ifexg 4508 |
. . . . . . . 8
⊢ ((𝑌 ∈ 𝐴 ∧ (𝐺‘𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) ∈ V) |
27 | 24, 25, 26 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) ∈ V) |
28 | 12, 21, 23, 27 | fvmptd3 6898 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹‘𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘))) |
29 | | eldifn 4062 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
30 | 29 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
31 | | velsn 4577 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋) |
32 | | elun2 4111 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
33 | 31, 32 | sylbir 234 |
. . . . . . . 8
⊢ (𝑘 = 𝑋 → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
34 | 30, 33 | nsyl 140 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋) |
35 | 34 | iffalsed 4470 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) = (𝐺‘𝑘)) |
36 | | ssun1 4106 |
. . . . . . . . 9
⊢ (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) |
37 | | sscon 4073 |
. . . . . . . . 9
⊢ ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))) |
38 | 36, 37 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)) |
39 | 38 | sseli 3917 |
. . . . . . 7
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) |
40 | | ssidd 3944 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅)) |
41 | | 0ex 5231 |
. . . . . . . . 9
⊢ ∅
∈ V |
42 | 41 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈
V) |
43 | 9, 40, 6, 42 | suppssr 8012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺‘𝑘) = ∅) |
44 | 39, 43 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺‘𝑘) = ∅) |
45 | 28, 35, 44 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹‘𝑘) = ∅) |
46 | 13, 45 | suppss 8010 |
. . . 4
⊢ (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})) |
47 | 18, 46 | ssfid 9042 |
. . 3
⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
48 | 12 | funmpt2 6473 |
. . . 4
⊢ Fun 𝐹 |
49 | | mptexg 7097 |
. . . . . 6
⊢ (𝐵 ∈ On → (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) ∈ V) |
50 | 12, 49 | eqeltrid 2843 |
. . . . 5
⊢ (𝐵 ∈ On → 𝐹 ∈ V) |
51 | 6, 50 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ V) |
52 | | funisfsupp 9133 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ V ∧ ∅ ∈ V) →
(𝐹 finSupp ∅ ↔
(𝐹 supp ∅) ∈
Fin)) |
53 | 48, 51, 42, 52 | mp3an2i 1465 |
. . 3
⊢ (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin)) |
54 | 47, 53 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐹 finSupp ∅) |
55 | 4, 5, 6 | cantnfs 9424 |
. 2
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
56 | 13, 54, 55 | mpbir2and 710 |
1
⊢ (𝜑 → 𝐹 ∈ 𝑆) |