MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc2 Structured version   Visualization version   GIF version

Theorem ellimc2 25041
Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
limccl.a (𝜑𝐴 ⊆ ℂ)
limccl.b (𝜑𝐵 ∈ ℂ)
ellimc2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ellimc2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
Distinct variable groups:   𝑤,𝑢,𝐴   𝑢,𝐵,𝑤   𝜑,𝑢,𝑤   𝑢,𝐶,𝑤   𝑢,𝐹,𝑤   𝑢,𝐾,𝑤

Proof of Theorem ellimc2
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25039 . . . 4 (𝐹 lim 𝐵) ⊆ ℂ
21sseli 3917 . . 3 (𝐶 ∈ (𝐹 lim 𝐵) → 𝐶 ∈ ℂ)
32pm4.71ri 561 . 2 (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)))
4 eqid 2738 . . . . . 6 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
5 ellimc2.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6 eqid 2738 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7 limccl.f . . . . . 6 (𝜑𝐹:𝐴⟶ℂ)
8 limccl.a . . . . . 6 (𝜑𝐴 ⊆ ℂ)
9 limccl.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
104, 5, 6, 7, 8, 9ellimc 25037 . . . . 5 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
1110adantr 481 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
125cnfldtopon 23946 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
139snssd 4742 . . . . . . . 8 (𝜑 → {𝐵} ⊆ ℂ)
148, 13unssd 4120 . . . . . . 7 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
15 resttopon 22312 . . . . . . 7 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1612, 14, 15sylancr 587 . . . . . 6 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1716adantr 481 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1812a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐾 ∈ (TopOn‘ℂ))
19 ssun2 4107 . . . . . . 7 {𝐵} ⊆ (𝐴 ∪ {𝐵})
20 snssg 4718 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
219, 20syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
2219, 21mpbiri 257 . . . . . 6 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
2322adantr 481 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
24 elun 4083 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
25 velsn 4577 . . . . . . . . 9 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
2625orbi2i 910 . . . . . . . 8 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2724, 26bitri 274 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
28 simpllr 773 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ 𝑧 = 𝐵) → 𝐶 ∈ ℂ)
29 pm5.61 998 . . . . . . . . . 10 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
307ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3130ad2ant2r 744 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3229, 31sylan2b 594 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ ((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3332anassrs 468 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ ¬ 𝑧 = 𝐵) → (𝐹𝑧) ∈ ℂ)
3428, 33ifclda 4494 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3527, 34sylan2b 594 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3635fmpttd 6989 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ)
37 iscnp 22388 . . . . . 6 (((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ∧ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))))
3837baibd 540 . . . . 5 ((((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
3917, 18, 23, 36, 38syl31anc 1372 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
40 iftrue 4465 . . . . . . . . . . 11 (𝑧 = 𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
4140, 6fvmptg 6873 . . . . . . . . . 10 ((𝐵 ∈ (𝐴 ∪ {𝐵}) ∧ 𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4222, 41sylan 580 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4342eleq1d 2823 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢𝐶𝑢))
4443imbi1d 342 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
4544adantr 481 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
465cnfldtop 23947 . . . . . . . . . . 11 𝐾 ∈ Top
47 cnex 10952 . . . . . . . . . . . . . 14 ℂ ∈ V
4847ssex 5245 . . . . . . . . . . . . 13 ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V)
4914, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∪ {𝐵}) ∈ V)
5049ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐴 ∪ {𝐵}) ∈ V)
51 restval 17137 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ (𝐴 ∪ {𝐵}) ∈ V) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5246, 50, 51sylancr 587 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5352rexeqdv 3349 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))
54 vex 3436 . . . . . . . . . . . 12 𝑤 ∈ V
5554inex1 5241 . . . . . . . . . . 11 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
5655rgenw 3076 . . . . . . . . . 10 𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
57 eqid 2738 . . . . . . . . . . 11 (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))
58 eleq2 2827 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (𝐵𝑣𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
59 imaeq2 5965 . . . . . . . . . . . . 13 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
6059sseq1d 3952 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢))
6158, 60anbi12d 631 . . . . . . . . . . 11 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6257, 61rexrnmptw 6971 . . . . . . . . . 10 (∀𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6356, 62mp1i 13 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6422ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
65 elin 3903 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ (𝐵𝑤𝐵 ∈ (𝐴 ∪ {𝐵})))
6665rbaib 539 . . . . . . . . . . . 12 (𝐵 ∈ (𝐴 ∪ {𝐵}) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
6764, 66syl 17 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
68 simpllr 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶 ∈ ℂ)
69 fvex 6787 . . . . . . . . . . . . . . . . 17 (𝐹𝑧) ∈ V
70 ifexg 4508 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ V) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7168, 69, 70sylancl 586 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7271ralrimivw 3104 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
73 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7473fnmpt 6573 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V → (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})))
7573fmpt 6984 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢)
76 df-f 6437 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7775, 76bitri 274 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7877baib 536 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7972, 74, 783syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
80 simplrr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶𝑢)
81 elinel2 4130 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑤 ∩ {𝐵}) → 𝑧 ∈ {𝐵})
8225, 40sylbi 216 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝐵} → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
8382eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8481, 83syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑤 ∩ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8580, 84syl5ibrcom 246 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑧 ∈ (𝑤 ∩ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
8685ralrimiv 3102 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
87 undif1 4409 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
8887ineq2i 4143 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝑤 ∩ (𝐴 ∪ {𝐵}))
89 indi 4207 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9088, 89eqtr3i 2768 . . . . . . . . . . . . . . . . . 18 (𝑤 ∩ (𝐴 ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9190raleqi 3346 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
92 ralunb 4125 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9391, 92bitri 274 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9493rbaib 539 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9586, 94syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9679, 95bitr3d 280 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
97 elinel2 4130 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
98 eldifsni 4723 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
99 ifnefalse 4471 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
10098, 99syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴 ∖ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
101100eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
10297, 101syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
103102ralbiia 3091 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢)
10496, 103bitrdi 287 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
105 df-ima 5602 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵})))
106 inss2 4163 . . . . . . . . . . . . . . . 16 (𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵})
107 resmpt 5945 . . . . . . . . . . . . . . . 16 ((𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵}) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
108106, 107mp1i 13 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
109108rneqd 5847 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
110105, 109eqtrid 2790 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
111110sseq1d 3952 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
1127ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐹:𝐴⟶ℂ)
113112ffund 6604 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → Fun 𝐹)
114 inss2 4163 . . . . . . . . . . . . . . 15 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
115 difss 4066 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
116114, 115sstri 3930 . . . . . . . . . . . . . 14 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ 𝐴
117112fdmd 6611 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → dom 𝐹 = 𝐴)
118116, 117sseqtrrid 3974 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
119 funimass4 6834 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
120113, 118, 119syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
121104, 111, 1203bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
12267, 121anbi12d 631 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
123122rexbidva 3225 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
12453, 63, 1233bitrd 305 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
125124anassrs 468 . . . . . . 7 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝐶𝑢) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
126125pm5.74da 801 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
12745, 126bitrd 278 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
128127ralbidva 3111 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
12911, 39, 1283bitrd 305 . . 3 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
130129pm5.32da 579 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
1313, 130bitrid 282 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  ifcif 4459  {csn 4561  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  t crest 17131  TopOpenctopn 17132  fldccnfld 20597  Topctop 22042  TopOnctopon 22059   CnP ccnp 22376   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  limcnlp  25042  ellimc3  25043  limcflf  25045  limcresi  25049  limciun  25058  lhop1lem  25177  limccog  43161
  Copyright terms: Public domain W3C validator