MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc2 Structured version   Visualization version   GIF version

Theorem ellimc2 24946
Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
limccl.a (𝜑𝐴 ⊆ ℂ)
limccl.b (𝜑𝐵 ∈ ℂ)
ellimc2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ellimc2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
Distinct variable groups:   𝑤,𝑢,𝐴   𝑢,𝐵,𝑤   𝜑,𝑢,𝑤   𝑢,𝐶,𝑤   𝑢,𝐹,𝑤   𝑢,𝐾,𝑤

Proof of Theorem ellimc2
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 24944 . . . 4 (𝐹 lim 𝐵) ⊆ ℂ
21sseli 3913 . . 3 (𝐶 ∈ (𝐹 lim 𝐵) → 𝐶 ∈ ℂ)
32pm4.71ri 560 . 2 (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)))
4 eqid 2738 . . . . . 6 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
5 ellimc2.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6 eqid 2738 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7 limccl.f . . . . . 6 (𝜑𝐹:𝐴⟶ℂ)
8 limccl.a . . . . . 6 (𝜑𝐴 ⊆ ℂ)
9 limccl.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
104, 5, 6, 7, 8, 9ellimc 24942 . . . . 5 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
125cnfldtopon 23852 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
139snssd 4739 . . . . . . . 8 (𝜑 → {𝐵} ⊆ ℂ)
148, 13unssd 4116 . . . . . . 7 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
15 resttopon 22220 . . . . . . 7 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1612, 14, 15sylancr 586 . . . . . 6 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1716adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1812a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐾 ∈ (TopOn‘ℂ))
19 ssun2 4103 . . . . . . 7 {𝐵} ⊆ (𝐴 ∪ {𝐵})
20 snssg 4715 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
219, 20syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
2219, 21mpbiri 257 . . . . . 6 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
2322adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
24 elun 4079 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
25 velsn 4574 . . . . . . . . 9 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
2625orbi2i 909 . . . . . . . 8 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2724, 26bitri 274 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
28 simpllr 772 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ 𝑧 = 𝐵) → 𝐶 ∈ ℂ)
29 pm5.61 997 . . . . . . . . . 10 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
307ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3130ad2ant2r 743 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3229, 31sylan2b 593 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ ((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3332anassrs 467 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ ¬ 𝑧 = 𝐵) → (𝐹𝑧) ∈ ℂ)
3428, 33ifclda 4491 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3527, 34sylan2b 593 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3635fmpttd 6971 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ)
37 iscnp 22296 . . . . . 6 (((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ∧ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))))
3837baibd 539 . . . . 5 ((((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
3917, 18, 23, 36, 38syl31anc 1371 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
40 iftrue 4462 . . . . . . . . . . 11 (𝑧 = 𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
4140, 6fvmptg 6855 . . . . . . . . . 10 ((𝐵 ∈ (𝐴 ∪ {𝐵}) ∧ 𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4222, 41sylan 579 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4342eleq1d 2823 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢𝐶𝑢))
4443imbi1d 341 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
4544adantr 480 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
465cnfldtop 23853 . . . . . . . . . . 11 𝐾 ∈ Top
47 cnex 10883 . . . . . . . . . . . . . 14 ℂ ∈ V
4847ssex 5240 . . . . . . . . . . . . 13 ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V)
4914, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∪ {𝐵}) ∈ V)
5049ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐴 ∪ {𝐵}) ∈ V)
51 restval 17054 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ (𝐴 ∪ {𝐵}) ∈ V) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5246, 50, 51sylancr 586 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5352rexeqdv 3340 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))
54 vex 3426 . . . . . . . . . . . 12 𝑤 ∈ V
5554inex1 5236 . . . . . . . . . . 11 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
5655rgenw 3075 . . . . . . . . . 10 𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
57 eqid 2738 . . . . . . . . . . 11 (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))
58 eleq2 2827 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (𝐵𝑣𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
59 imaeq2 5954 . . . . . . . . . . . . 13 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
6059sseq1d 3948 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢))
6158, 60anbi12d 630 . . . . . . . . . . 11 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6257, 61rexrnmptw 6953 . . . . . . . . . 10 (∀𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6356, 62mp1i 13 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6422ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
65 elin 3899 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ (𝐵𝑤𝐵 ∈ (𝐴 ∪ {𝐵})))
6665rbaib 538 . . . . . . . . . . . 12 (𝐵 ∈ (𝐴 ∪ {𝐵}) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
6764, 66syl 17 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
68 simpllr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶 ∈ ℂ)
69 fvex 6769 . . . . . . . . . . . . . . . . 17 (𝐹𝑧) ∈ V
70 ifexg 4505 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ V) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7168, 69, 70sylancl 585 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7271ralrimivw 3108 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
73 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7473fnmpt 6557 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V → (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})))
7573fmpt 6966 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢)
76 df-f 6422 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7775, 76bitri 274 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7877baib 535 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7972, 74, 783syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
80 simplrr 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶𝑢)
81 elinel2 4126 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑤 ∩ {𝐵}) → 𝑧 ∈ {𝐵})
8225, 40sylbi 216 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝐵} → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
8382eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8481, 83syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑤 ∩ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8580, 84syl5ibrcom 246 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑧 ∈ (𝑤 ∩ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
8685ralrimiv 3106 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
87 undif1 4406 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
8887ineq2i 4140 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝑤 ∩ (𝐴 ∪ {𝐵}))
89 indi 4204 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9088, 89eqtr3i 2768 . . . . . . . . . . . . . . . . . 18 (𝑤 ∩ (𝐴 ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9190raleqi 3337 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
92 ralunb 4121 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9391, 92bitri 274 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9493rbaib 538 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9586, 94syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9679, 95bitr3d 280 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
97 elinel2 4126 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
98 eldifsni 4720 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
99 ifnefalse 4468 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
10098, 99syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴 ∖ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
101100eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
10297, 101syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
103102ralbiia 3089 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢)
10496, 103bitrdi 286 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
105 df-ima 5593 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵})))
106 inss2 4160 . . . . . . . . . . . . . . . 16 (𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵})
107 resmpt 5934 . . . . . . . . . . . . . . . 16 ((𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵}) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
108106, 107mp1i 13 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
109108rneqd 5836 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
110105, 109syl5eq 2791 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
111110sseq1d 3948 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
1127ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐹:𝐴⟶ℂ)
113112ffund 6588 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → Fun 𝐹)
114 inss2 4160 . . . . . . . . . . . . . . 15 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
115 difss 4062 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
116114, 115sstri 3926 . . . . . . . . . . . . . 14 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ 𝐴
117112fdmd 6595 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → dom 𝐹 = 𝐴)
118116, 117sseqtrrid 3970 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
119 funimass4 6816 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
120113, 118, 119syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
121104, 111, 1203bitr4d 310 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
12267, 121anbi12d 630 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
123122rexbidva 3224 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
12453, 63, 1233bitrd 304 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
125124anassrs 467 . . . . . . 7 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝐶𝑢) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
126125pm5.74da 800 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
12745, 126bitrd 278 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
128127ralbidva 3119 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
12911, 39, 1283bitrd 304 . . 3 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
130129pm5.32da 578 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
1313, 130syl5bb 282 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  ifcif 4456  {csn 4558  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967   CnP ccnp 22284   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  limcnlp  24947  ellimc3  24948  limcflf  24950  limcresi  24954  limciun  24963  lhop1lem  25082  limccog  43051
  Copyright terms: Public domain W3C validator