MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc2 Structured version   Visualization version   GIF version

Theorem ellimc2 25811
Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
limccl.a (𝜑𝐴 ⊆ ℂ)
limccl.b (𝜑𝐵 ∈ ℂ)
ellimc2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ellimc2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
Distinct variable groups:   𝑤,𝑢,𝐴   𝑢,𝐵,𝑤   𝜑,𝑢,𝑤   𝑢,𝐶,𝑤   𝑢,𝐹,𝑤   𝑢,𝐾,𝑤

Proof of Theorem ellimc2
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25809 . . . 4 (𝐹 lim 𝐵) ⊆ ℂ
21sseli 3939 . . 3 (𝐶 ∈ (𝐹 lim 𝐵) → 𝐶 ∈ ℂ)
32pm4.71ri 560 . 2 (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)))
4 eqid 2729 . . . . . 6 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
5 ellimc2.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
6 eqid 2729 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7 limccl.f . . . . . 6 (𝜑𝐹:𝐴⟶ℂ)
8 limccl.a . . . . . 6 (𝜑𝐴 ⊆ ℂ)
9 limccl.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
104, 5, 6, 7, 8, 9ellimc 25807 . . . . 5 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
125cnfldtopon 24703 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
139snssd 4769 . . . . . . . 8 (𝜑 → {𝐵} ⊆ ℂ)
148, 13unssd 4151 . . . . . . 7 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
15 resttopon 23081 . . . . . . 7 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1612, 14, 15sylancr 587 . . . . . 6 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1716adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
1812a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐾 ∈ (TopOn‘ℂ))
19 ssun2 4138 . . . . . . 7 {𝐵} ⊆ (𝐴 ∪ {𝐵})
20 snssg 4743 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
219, 20syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
2219, 21mpbiri 258 . . . . . 6 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
2322adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℂ) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
24 elun 4112 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
25 velsn 4601 . . . . . . . . 9 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
2625orbi2i 912 . . . . . . . 8 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2724, 26bitri 275 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
28 simpllr 775 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ 𝑧 = 𝐵) → 𝐶 ∈ ℂ)
29 pm5.61 1002 . . . . . . . . . 10 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
307ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
3130ad2ant2r 747 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3229, 31sylan2b 594 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ ((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵)) → (𝐹𝑧) ∈ ℂ)
3332anassrs 467 . . . . . . . 8 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) ∧ ¬ 𝑧 = 𝐵) → (𝐹𝑧) ∈ ℂ)
3428, 33ifclda 4520 . . . . . . 7 (((𝜑𝐶 ∈ ℂ) ∧ (𝑧𝐴𝑧 = 𝐵)) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3527, 34sylan2b 594 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ ℂ)
3635fmpttd 7069 . . . . 5 ((𝜑𝐶 ∈ ℂ) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ)
37 iscnp 23157 . . . . . 6 (((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ∧ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))))
3837baibd 539 . . . . 5 ((((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ (𝐴 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
3917, 18, 23, 36, 38syl31anc 1375 . . . 4 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
40 iftrue 4490 . . . . . . . . . . 11 (𝑧 = 𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
4140, 6fvmptg 6948 . . . . . . . . . 10 ((𝐵 ∈ (𝐴 ∪ {𝐵}) ∧ 𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4222, 41sylan 580 . . . . . . . . 9 ((𝜑𝐶 ∈ ℂ) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) = 𝐶)
4342eleq1d 2813 . . . . . . . 8 ((𝜑𝐶 ∈ ℂ) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢𝐶𝑢))
4443imbi1d 341 . . . . . . 7 ((𝜑𝐶 ∈ ℂ) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
4544adantr 480 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢))))
465cnfldtop 24704 . . . . . . . . . . 11 𝐾 ∈ Top
47 cnex 11125 . . . . . . . . . . . . . 14 ℂ ∈ V
4847ssex 5271 . . . . . . . . . . . . 13 ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V)
4914, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∪ {𝐵}) ∈ V)
5049ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐴 ∪ {𝐵}) ∈ V)
51 restval 17365 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ (𝐴 ∪ {𝐵}) ∈ V) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5246, 50, 51sylancr 587 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (𝐾t (𝐴 ∪ {𝐵})) = ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
5352rexeqdv 3297 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)))
54 vex 3448 . . . . . . . . . . . 12 𝑤 ∈ V
5554inex1 5267 . . . . . . . . . . 11 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
5655rgenw 3048 . . . . . . . . . 10 𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V
57 eqid 2729 . . . . . . . . . . 11 (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))
58 eleq2 2817 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (𝐵𝑣𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
59 imaeq2 6016 . . . . . . . . . . . . 13 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))))
6059sseq1d 3975 . . . . . . . . . . . 12 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢 ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢))
6158, 60anbi12d 632 . . . . . . . . . . 11 (𝑣 = (𝑤 ∩ (𝐴 ∪ {𝐵})) → ((𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6257, 61rexrnmptw 7049 . . . . . . . . . 10 (∀𝑤𝐾 (𝑤 ∩ (𝐴 ∪ {𝐵})) ∈ V → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6356, 62mp1i 13 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ ran (𝑤𝐾 ↦ (𝑤 ∩ (𝐴 ∪ {𝐵})))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢)))
6422ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
65 elin 3927 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ (𝐵𝑤𝐵 ∈ (𝐴 ∪ {𝐵})))
6665rbaib 538 . . . . . . . . . . . 12 (𝐵 ∈ (𝐴 ∪ {𝐵}) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
6764, 66syl 17 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↔ 𝐵𝑤))
68 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶 ∈ ℂ)
69 fvex 6853 . . . . . . . . . . . . . . . . 17 (𝐹𝑧) ∈ V
70 ifexg 4534 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐹𝑧) ∈ V) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7168, 69, 70sylancl 586 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
7271ralrimivw 3129 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V)
73 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
7473fnmpt 6640 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ V → (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})))
7573fmpt 7064 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢)
76 df-f 6503 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))):(𝑤 ∩ (𝐴 ∪ {𝐵}))⟶𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7775, 76bitri 275 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7877baib 535 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) Fn (𝑤 ∩ (𝐴 ∪ {𝐵})) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
7972, 74, 783syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
80 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐶𝑢)
81 elinel2 4161 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑤 ∩ {𝐵}) → 𝑧 ∈ {𝐵})
8225, 40sylbi 217 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝐵} → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = 𝐶)
8382eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝐵} → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8481, 83syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑤 ∩ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢𝐶𝑢))
8580, 84syl5ibrcom 247 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑧 ∈ (𝑤 ∩ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
8685ralrimiv 3124 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
87 undif1 4435 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
8887ineq2i 4176 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝑤 ∩ (𝐴 ∪ {𝐵}))
89 indi 4243 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∩ ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9088, 89eqtr3i 2754 . . . . . . . . . . . . . . . . . 18 (𝑤 ∩ (𝐴 ∪ {𝐵})) = ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))
9190raleqi 3294 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢)
92 ralunb 4156 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ ((𝑤 ∩ (𝐴 ∖ {𝐵})) ∪ (𝑤 ∩ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9391, 92bitri 275 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ∧ ∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9493rbaib 538 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (𝑤 ∩ {𝐵})if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9586, 94syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
9679, 95bitr3d 281 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢))
97 elinel2 4161 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → 𝑧 ∈ (𝐴 ∖ {𝐵}))
98 eldifsni 4750 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐴 ∖ {𝐵}) → 𝑧𝐵)
99 ifnefalse 4496 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
10098, 99syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴 ∖ {𝐵}) → if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) = (𝐹𝑧))
101100eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴 ∖ {𝐵}) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
10297, 101syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵})) → (if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ (𝐹𝑧) ∈ 𝑢))
103102ralbiia 3073 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)) ∈ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢)
10496, 103bitrdi 287 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
105 df-ima 5644 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵})))
106 inss2 4197 . . . . . . . . . . . . . . . 16 (𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵})
107 resmpt 5997 . . . . . . . . . . . . . . . 16 ((𝑤 ∩ (𝐴 ∪ {𝐵})) ⊆ (𝐴 ∪ {𝐵}) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
108106, 107mp1i 13 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
109108rneqd 5891 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ran ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ↾ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
110105, 109eqtrid 2776 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) = ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
111110sseq1d 3975 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ ran (𝑧 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) ⊆ 𝑢))
1127ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → 𝐹:𝐴⟶ℂ)
113112ffund 6674 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → Fun 𝐹)
114 inss2 4197 . . . . . . . . . . . . . . 15 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
115 difss 4095 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
116114, 115sstri 3953 . . . . . . . . . . . . . 14 (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ 𝐴
117112fdmd 6680 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → dom 𝐹 = 𝐴)
118116, 117sseqtrrid 3987 . . . . . . . . . . . . 13 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹)
119 funimass4 6907 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑤 ∩ (𝐴 ∖ {𝐵})) ⊆ dom 𝐹) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
120113, 118, 119syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ ∀𝑧 ∈ (𝑤 ∩ (𝐴 ∖ {𝐵}))(𝐹𝑧) ∈ 𝑢))
121104, 111, 1203bitr4d 311 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
12267, 121anbi12d 632 . . . . . . . . . 10 ((((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) ∧ 𝑤𝐾) → ((𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
123122rexbidva 3155 . . . . . . . . 9 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑤𝐾 (𝐵 ∈ (𝑤 ∩ (𝐴 ∪ {𝐵})) ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ (𝑤 ∩ (𝐴 ∪ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
12453, 63, 1233bitrd 305 . . . . . . . 8 (((𝜑𝐶 ∈ ℂ) ∧ (𝑢𝐾𝐶𝑢)) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
125124anassrs 467 . . . . . . 7 ((((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝐶𝑢) → (∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢) ↔ ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
126125pm5.74da 803 . . . . . 6 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((𝐶𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
12745, 126bitrd 279 . . . . 5 (((𝜑𝐶 ∈ ℂ) ∧ 𝑢𝐾) → ((((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
128127ralbidva 3154 . . . 4 ((𝜑𝐶 ∈ ℂ) → (∀𝑢𝐾 (((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))‘𝐵) ∈ 𝑢 → ∃𝑣 ∈ (𝐾t (𝐴 ∪ {𝐵}))(𝐵𝑣 ∧ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))) “ 𝑣) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
12911, 39, 1283bitrd 305 . . 3 ((𝜑𝐶 ∈ ℂ) → (𝐶 ∈ (𝐹 lim 𝐵) ↔ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))
130129pm5.32da 579 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ 𝐶 ∈ (𝐹 lim 𝐵)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
1313, 130bitrid 283 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑢𝐾 (𝐶𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  ifcif 4484  {csn 4585  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  t crest 17359  TopOpenctopn 17360  fldccnfld 21296  Topctop 22813  TopOnctopon 22830   CnP ccnp 23145   lim climc 25796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cnp 23148  df-xms 24241  df-ms 24242  df-limc 25800
This theorem is referenced by:  limcnlp  25812  ellimc3  25813  limcflf  25815  limcresi  25819  limciun  25828  lhop1lem  25951  limccog  45611
  Copyright terms: Public domain W3C validator