Step | Hyp | Ref
| Expression |
1 | | cantnfs.s |
. . 3
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
2 | | cantnfs.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | cantnfs.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ On) |
4 | | cantnfp1.o |
. . 3
⊢ 𝑂 = OrdIso( E , (𝐹 supp ∅)) |
5 | | cantnfp1.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
6 | | cantnfp1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
7 | | cantnfp1.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
8 | | cantnfp1.s |
. . . 4
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) |
9 | | cantnfp1.f |
. . . 4
⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) |
10 | 1, 2, 3, 5, 6, 7, 8, 9 | cantnfp1lem1 9436 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
11 | | cantnfp1.h |
. . 3
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝑂‘𝑘)) ·o (𝐹‘(𝑂‘𝑘))) +o 𝑧)), ∅) |
12 | 1, 2, 3, 4, 10, 11 | cantnfval 9426 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝑂)) |
13 | | cantnfp1.e |
. . . 4
⊢ (𝜑 → ∅ ∈ 𝑌) |
14 | 1, 2, 3, 5, 6, 7, 8, 9, 13, 4 | cantnfp1lem2 9437 |
. . 3
⊢ (𝜑 → dom 𝑂 = suc ∪ dom
𝑂) |
15 | 14 | fveq2d 6778 |
. 2
⊢ (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc ∪ dom
𝑂)) |
16 | 1, 2, 3, 4, 10 | cantnfcl 9425 |
. . . . . . 7
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω)) |
17 | 16 | simprd 496 |
. . . . . 6
⊢ (𝜑 → dom 𝑂 ∈ ω) |
18 | 14, 17 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → suc ∪ dom 𝑂 ∈ ω) |
19 | | peano2b 7729 |
. . . . 5
⊢ (∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω) |
20 | 18, 19 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ dom 𝑂 ∈ ω) |
21 | 1, 2, 3, 4, 10, 11 | cantnfsuc 9428 |
. . . 4
⊢ ((𝜑 ∧ ∪ dom 𝑂 ∈ ω) → (𝐻‘suc ∪ dom
𝑂) = (((𝐴 ↑o (𝑂‘∪ dom
𝑂)) ·o
(𝐹‘(𝑂‘∪ dom
𝑂))) +o (𝐻‘∪ dom 𝑂))) |
22 | 20, 21 | mpdan 684 |
. . 3
⊢ (𝜑 → (𝐻‘suc ∪ dom
𝑂) = (((𝐴 ↑o (𝑂‘∪ dom
𝑂)) ·o
(𝐹‘(𝑂‘∪ dom
𝑂))) +o (𝐻‘∪ dom 𝑂))) |
23 | | ovexd 7310 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) |
24 | 16 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → E We (𝐹 supp ∅)) |
25 | 4 | oiiso 9296 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅))) |
26 | 23, 24, 25 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅))) |
27 | | isof1o 7194 |
. . . . . . . . . . . . . 14
⊢ (𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐹 supp ∅)) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑂:dom 𝑂–1-1-onto→(𝐹 supp ∅)) |
29 | | f1ocnv 6728 |
. . . . . . . . . . . . 13
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐹 supp ∅) → ◡𝑂:(𝐹 supp ∅)–1-1-onto→dom
𝑂) |
30 | | f1of 6716 |
. . . . . . . . . . . . 13
⊢ (◡𝑂:(𝐹 supp ∅)–1-1-onto→dom
𝑂 → ◡𝑂:(𝐹 supp ∅)⟶dom 𝑂) |
31 | 28, 29, 30 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝑂:(𝐹 supp ∅)⟶dom 𝑂) |
32 | | iftrue 4465 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) = 𝑌) |
33 | 9, 32, 6, 7 | fvmptd3 6898 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝑋) = 𝑌) |
34 | 13 | ne0d 4269 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 ≠ ∅) |
35 | 33, 34 | eqnetrd 3011 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝑋) ≠ ∅) |
36 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑌 ∈ 𝐴) |
37 | 1, 2, 3 | cantnfs 9424 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
38 | 5, 37 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
39 | 38 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
40 | 39 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝐺‘𝑡) ∈ 𝐴) |
41 | 36, 40 | ifcld 4505 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) ∈ 𝐴) |
42 | 41, 9 | fmptd 6988 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
43 | 42 | ffnd 6601 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐵) |
44 | | 0ex 5231 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ V |
45 | 44 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∅ ∈
V) |
46 | | elsuppfn 7987 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
(𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ≠ ∅))) |
47 | 43, 3, 45, 46 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ≠ ∅))) |
48 | 6, 35, 47 | mpbir2and 710 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (𝐹 supp ∅)) |
49 | 31, 48 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ dom 𝑂) |
50 | | elssuni 4871 |
. . . . . . . . . . 11
⊢ ((◡𝑂‘𝑋) ∈ dom 𝑂 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
52 | 4 | oicl 9288 |
. . . . . . . . . . . 12
⊢ Ord dom
𝑂 |
53 | | ordelon 6290 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂) → (◡𝑂‘𝑋) ∈ On) |
54 | 52, 49, 53 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ On) |
55 | | nnon 7718 |
. . . . . . . . . . . 12
⊢ (∪ dom 𝑂 ∈ ω → ∪ dom 𝑂 ∈ On) |
56 | 20, 55 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ dom 𝑂 ∈ On) |
57 | | ontri1 6300 |
. . . . . . . . . . 11
⊢ (((◡𝑂‘𝑋) ∈ On ∧ ∪ dom 𝑂 ∈ On) → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
58 | 54, 56, 57 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
59 | 51, 58 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋)) |
60 | | sucidg 6344 |
. . . . . . . . . . . . . 14
⊢ (∪ dom 𝑂 ∈ ω → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
61 | 20, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
62 | 61, 14 | eleqtrrd 2842 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ dom 𝑂 ∈ dom 𝑂) |
63 | | isorel 7197 |
. . . . . . . . . . . 12
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ (∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂)) → (∪ dom
𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
64 | 26, 62, 49, 63 | syl12anc 834 |
. . . . . . . . . . 11
⊢ (𝜑 → (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
65 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (◡𝑂‘𝑋) ∈ V |
66 | 65 | epeli 5497 |
. . . . . . . . . . 11
⊢ (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ ∪ dom
𝑂 ∈ (◡𝑂‘𝑋)) |
67 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝑂‘(◡𝑂‘𝑋)) ∈ V |
68 | 67 | epeli 5497 |
. . . . . . . . . . 11
⊢ ((𝑂‘∪ dom 𝑂) E (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋))) |
69 | 64, 66, 68 | 3bitr3g 313 |
. . . . . . . . . 10
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)))) |
70 | | f1ocnvfv2 7149 |
. . . . . . . . . . . 12
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐹 supp ∅) ∧ 𝑋 ∈ (𝐹 supp ∅)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
71 | 28, 48, 70 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
72 | 71 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
73 | 69, 72 | bitrd 278 |
. . . . . . . . 9
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
74 | 59, 73 | mtbid 324 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝑂‘∪ dom
𝑂) ∈ 𝑋) |
75 | 8 | sseld 3920 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅) → (𝑂‘∪ dom 𝑂) ∈ 𝑋)) |
76 | | suppssdm 7993 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 |
77 | 76, 42 | fssdm 6620 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
78 | | onss 7634 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
79 | 3, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ⊆ On) |
80 | 77, 79 | sstrd 3931 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
81 | 4 | oif 9289 |
. . . . . . . . . . . . . . . 16
⊢ 𝑂:dom 𝑂⟶(𝐹 supp ∅) |
82 | 81 | ffvelrni 6960 |
. . . . . . . . . . . . . . 15
⊢ (∪ dom 𝑂 ∈ dom 𝑂 → (𝑂‘∪ dom
𝑂) ∈ (𝐹 supp ∅)) |
83 | 62, 82 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ (𝐹 supp ∅)) |
84 | 80, 83 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈
On) |
85 | | eloni 6276 |
. . . . . . . . . . . . 13
⊢ ((𝑂‘∪ dom 𝑂) ∈ On → Ord (𝑂‘∪ dom
𝑂)) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ord (𝑂‘∪ dom
𝑂)) |
87 | | ordn2lp 6286 |
. . . . . . . . . . . 12
⊢ (Ord
(𝑂‘∪ dom 𝑂) → ¬ ((𝑂‘∪ dom
𝑂) ∈ 𝑋 ∧ 𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ ((𝑂‘∪ dom
𝑂) ∈ 𝑋 ∧ 𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
89 | | imnan 400 |
. . . . . . . . . . 11
⊢ (((𝑂‘∪ dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂‘∪ dom
𝑂)) ↔ ¬ ((𝑂‘∪ dom 𝑂) ∈ 𝑋 ∧ 𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
90 | 88, 89 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
91 | 75, 90 | syld 47 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅) → ¬
𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
92 | | onelon 6291 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
93 | 3, 6, 92 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ On) |
94 | | eloni 6276 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ On → Ord 𝑋) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Ord 𝑋) |
96 | | ordirr 6284 |
. . . . . . . . . . 11
⊢ (Ord
𝑋 → ¬ 𝑋 ∈ 𝑋) |
97 | 95, 96 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑋) |
98 | | elsni 4578 |
. . . . . . . . . . . 12
⊢ ((𝑂‘∪ dom 𝑂) ∈ {𝑋} → (𝑂‘∪ dom
𝑂) = 𝑋) |
99 | 98 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝑂‘∪ dom 𝑂) ∈ {𝑋} → (𝑋 ∈ (𝑂‘∪ dom
𝑂) ↔ 𝑋 ∈ 𝑋)) |
100 | 99 | notbid 318 |
. . . . . . . . . 10
⊢ ((𝑂‘∪ dom 𝑂) ∈ {𝑋} → (¬ 𝑋 ∈ (𝑂‘∪ dom
𝑂) ↔ ¬ 𝑋 ∈ 𝑋)) |
101 | 97, 100 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ {𝑋} → ¬ 𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
102 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑘 → (𝑡 = 𝑋 ↔ 𝑘 = 𝑋)) |
103 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑘 → (𝐺‘𝑡) = (𝐺‘𝑘)) |
104 | 102, 103 | ifbieq2d 4485 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘))) |
105 | | eldifi 4061 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ 𝐵) |
106 | 105 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘 ∈ 𝐵) |
107 | 7 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌 ∈ 𝐴) |
108 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘𝑘) ∈ V |
109 | | ifexg 4508 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌 ∈ 𝐴 ∧ (𝐺‘𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) ∈ V) |
110 | 107, 108,
109 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) ∈ V) |
111 | 9, 104, 106, 110 | fvmptd3 6898 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹‘𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘))) |
112 | | eldifn 4062 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
113 | 112 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
114 | | velsn 4577 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋) |
115 | | elun2 4111 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
116 | 114, 115 | sylbir 234 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑋 → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
117 | 113, 116 | nsyl 140 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋) |
118 | 117 | iffalsed 4470 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) = (𝐺‘𝑘)) |
119 | | ssun1 4106 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) |
120 | | sscon 4073 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))) |
121 | 119, 120 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)) |
122 | 121 | sseli 3917 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) |
123 | | ssidd 3944 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅)) |
124 | 39, 123, 3, 13 | suppssr 8012 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺‘𝑘) = ∅) |
125 | 122, 124 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺‘𝑘) = ∅) |
126 | 111, 118,
125 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹‘𝑘) = ∅) |
127 | 42, 126 | suppss 8010 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})) |
128 | 127, 83 | sseldd 3922 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋})) |
129 | | elun 4083 |
. . . . . . . . . 10
⊢ ((𝑂‘∪ dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}) ↔ ((𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂‘∪ dom 𝑂) ∈ {𝑋})) |
130 | 128, 129 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂‘∪ dom 𝑂) ∈ {𝑋})) |
131 | 91, 101, 130 | mpjaod 857 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑂‘∪ dom
𝑂)) |
132 | | ioran 981 |
. . . . . . . 8
⊢ (¬
((𝑂‘∪ dom 𝑂) ∈ 𝑋 ∨ 𝑋 ∈ (𝑂‘∪ dom
𝑂)) ↔ (¬ (𝑂‘∪ dom 𝑂) ∈ 𝑋 ∧ ¬ 𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
133 | 74, 131, 132 | sylanbrc 583 |
. . . . . . 7
⊢ (𝜑 → ¬ ((𝑂‘∪ dom
𝑂) ∈ 𝑋 ∨ 𝑋 ∈ (𝑂‘∪ dom
𝑂))) |
134 | | ordtri3 6302 |
. . . . . . . 8
⊢ ((Ord
(𝑂‘∪ dom 𝑂) ∧ Ord 𝑋) → ((𝑂‘∪ dom
𝑂) = 𝑋 ↔ ¬ ((𝑂‘∪ dom
𝑂) ∈ 𝑋 ∨ 𝑋 ∈ (𝑂‘∪ dom
𝑂)))) |
135 | 86, 95, 134 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) = 𝑋 ↔ ¬ ((𝑂‘∪ dom
𝑂) ∈ 𝑋 ∨ 𝑋 ∈ (𝑂‘∪ dom
𝑂)))) |
136 | 133, 135 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) = 𝑋) |
137 | 136 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (𝐴 ↑o (𝑂‘∪ dom
𝑂)) = (𝐴 ↑o 𝑋)) |
138 | 136 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝑂‘∪ dom
𝑂)) = (𝐹‘𝑋)) |
139 | 138, 33 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → (𝐹‘(𝑂‘∪ dom
𝑂)) = 𝑌) |
140 | 137, 139 | oveq12d 7293 |
. . . 4
⊢ (𝜑 → ((𝐴 ↑o (𝑂‘∪ dom
𝑂)) ·o
(𝐹‘(𝑂‘∪ dom
𝑂))) = ((𝐴 ↑o 𝑋) ·o 𝑌)) |
141 | | nnord 7720 |
. . . . . . . . 9
⊢ (∪ dom 𝑂 ∈ ω → Ord ∪ dom 𝑂) |
142 | 20, 141 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → Ord ∪ dom 𝑂) |
143 | | sssucid 6343 |
. . . . . . . . . 10
⊢ ∪ dom 𝑂 ⊆ suc ∪
dom 𝑂 |
144 | 143, 14 | sseqtrrid 3974 |
. . . . . . . . 9
⊢ (𝜑 → ∪ dom 𝑂 ⊆ dom 𝑂) |
145 | | f1ofo 6723 |
. . . . . . . . . . . . 13
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐹 supp ∅) → 𝑂:dom 𝑂–onto→(𝐹 supp ∅)) |
146 | 28, 145 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑂:dom 𝑂–onto→(𝐹 supp ∅)) |
147 | | foima 6693 |
. . . . . . . . . . . 12
⊢ (𝑂:dom 𝑂–onto→(𝐹 supp ∅) → (𝑂 “ dom 𝑂) = (𝐹 supp ∅)) |
148 | 146, 147 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂 “ dom 𝑂) = (𝐹 supp ∅)) |
149 | | ffn 6600 |
. . . . . . . . . . . . . 14
⊢ (𝑂:dom 𝑂⟶(𝐹 supp ∅) → 𝑂 Fn dom 𝑂) |
150 | 81, 149 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 𝑂 Fn dom 𝑂 |
151 | | fnsnfv 6847 |
. . . . . . . . . . . . 13
⊢ ((𝑂 Fn dom 𝑂 ∧ ∪ dom
𝑂 ∈ dom 𝑂) → {(𝑂‘∪ dom
𝑂)} = (𝑂 “ {∪ dom
𝑂})) |
152 | 150, 62, 151 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → {(𝑂‘∪ dom
𝑂)} = (𝑂 “ {∪ dom
𝑂})) |
153 | 136 | sneqd 4573 |
. . . . . . . . . . . 12
⊢ (𝜑 → {(𝑂‘∪ dom
𝑂)} = {𝑋}) |
154 | 152, 153 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂 “ {∪ dom
𝑂}) = {𝑋}) |
155 | 148, 154 | difeq12d 4058 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂 “ dom 𝑂) ∖ (𝑂 “ {∪ dom
𝑂})) = ((𝐹 supp ∅) ∖ {𝑋})) |
156 | | ordirr 6284 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord
∪ dom 𝑂 → ¬ ∪
dom 𝑂 ∈ ∪ dom 𝑂) |
157 | 142, 156 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ ∪ dom 𝑂 ∈ ∪ dom
𝑂) |
158 | | disjsn 4647 |
. . . . . . . . . . . . . . . 16
⊢ ((∪ dom 𝑂 ∩ {∪ dom
𝑂}) = ∅ ↔ ¬
∪ dom 𝑂 ∈ ∪ dom
𝑂) |
159 | 157, 158 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∪ dom 𝑂 ∩ {∪ dom
𝑂}) =
∅) |
160 | | disj3 4387 |
. . . . . . . . . . . . . . 15
⊢ ((∪ dom 𝑂 ∩ {∪ dom
𝑂}) = ∅ ↔ ∪ dom 𝑂 = (∪ dom 𝑂 ∖ {∪ dom 𝑂})) |
161 | 159, 160 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∪ dom 𝑂 = (∪ dom 𝑂 ∖ {∪ dom 𝑂})) |
162 | | difun2 4414 |
. . . . . . . . . . . . . 14
⊢ ((∪ dom 𝑂 ∪ {∪ dom
𝑂}) ∖ {∪ dom 𝑂}) = (∪ dom 𝑂 ∖ {∪ dom 𝑂}) |
163 | 161, 162 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ dom 𝑂 = ((∪ dom 𝑂 ∪ {∪ dom 𝑂}) ∖ {∪ dom
𝑂})) |
164 | | df-suc 6272 |
. . . . . . . . . . . . . . 15
⊢ suc ∪ dom 𝑂 = (∪ dom 𝑂 ∪ {∪ dom 𝑂}) |
165 | 14, 164 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑂 = (∪ dom 𝑂 ∪ {∪ dom 𝑂})) |
166 | 165 | difeq1d 4056 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (dom 𝑂 ∖ {∪ dom
𝑂}) = ((∪ dom 𝑂 ∪ {∪ dom
𝑂}) ∖ {∪ dom 𝑂})) |
167 | 163, 166 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ dom 𝑂 = (dom 𝑂 ∖ {∪ dom
𝑂})) |
168 | 167 | imaeq2d 5969 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂 “ ∪ dom
𝑂) = (𝑂 “ (dom 𝑂 ∖ {∪ dom
𝑂}))) |
169 | | dff1o3 6722 |
. . . . . . . . . . . . 13
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐹 supp ∅) ↔ (𝑂:dom 𝑂–onto→(𝐹 supp ∅) ∧ Fun ◡𝑂)) |
170 | 169 | simprbi 497 |
. . . . . . . . . . . 12
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐹 supp ∅) → Fun ◡𝑂) |
171 | | imadif 6518 |
. . . . . . . . . . . 12
⊢ (Fun
◡𝑂 → (𝑂 “ (dom 𝑂 ∖ {∪ dom
𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ {∪ dom
𝑂}))) |
172 | 28, 170, 171 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂 “ (dom 𝑂 ∖ {∪ dom
𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ {∪ dom
𝑂}))) |
173 | 168, 172 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂 “ ∪ dom
𝑂) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ {∪ dom
𝑂}))) |
174 | 8, 97 | ssneldd 3924 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑋 ∈ (𝐺 supp ∅)) |
175 | | disjsn 4647 |
. . . . . . . . . . . . 13
⊢ (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐺 supp ∅)) |
176 | 174, 175 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺 supp ∅) ∩ {𝑋}) = ∅) |
177 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺‘𝑋) ∈ V |
178 | | dif1o 8330 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑋) ∈ (V ∖ 1o) ↔
((𝐺‘𝑋) ∈ V ∧ (𝐺‘𝑋) ≠ ∅)) |
179 | 177, 178 | mpbiran 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺‘𝑋) ∈ (V ∖ 1o) ↔
(𝐺‘𝑋) ≠ ∅) |
180 | 39 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐺 Fn 𝐵) |
181 | | elsuppfn 7987 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
(𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
182 | 180, 3, 45, 181 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
183 | 179 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝐺‘𝑋) ∈ (V ∖ 1o) ↔
(𝐺‘𝑋) ≠ ∅)) |
184 | 183 | bicomd 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝐺‘𝑋) ≠ ∅ ↔ (𝐺‘𝑋) ∈ (V ∖
1o))) |
185 | 184 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ∈ (V ∖
1o)))) |
186 | 182, 185 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ∈ (V ∖
1o)))) |
187 | 8 | sseld 3920 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋 ∈ 𝑋)) |
188 | 186, 187 | sylbird 259 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ∈ (V ∖ 1o)) →
𝑋 ∈ 𝑋)) |
189 | 6, 188 | mpand 692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐺‘𝑋) ∈ (V ∖ 1o) →
𝑋 ∈ 𝑋)) |
190 | 179, 189 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ 𝑋)) |
191 | 190 | necon1bd 2961 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (¬ 𝑋 ∈ 𝑋 → (𝐺‘𝑋) = ∅)) |
192 | 97, 191 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺‘𝑋) = ∅) |
193 | 192 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺‘𝑋) = ∅) |
194 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑋 → ((𝐺‘𝑘) = ∅ ↔ (𝐺‘𝑋) = ∅)) |
195 | 193, 194 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝑘 = 𝑋 → (𝐺‘𝑘) = ∅)) |
196 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅)) → 𝑘 ∈ 𝐵) |
197 | 196 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑘 ∈ 𝐵) |
198 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑌 ∈ 𝐴) |
199 | 198, 108,
109 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) ∈ V) |
200 | 9, 104, 197, 199 | fvmptd3 6898 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹‘𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘))) |
201 | | ssidd 3944 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅)) |
202 | 42, 201, 3, 13 | suppssr 8012 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹‘𝑘) = ∅) |
203 | 200, 202 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) = ∅) |
204 | | iffalse 4468 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) = (𝐺‘𝑘)) |
205 | 204 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑌, (𝐺‘𝑘)) = ∅ ↔ (𝐺‘𝑘) = ∅)) |
206 | 203, 205 | syl5ibcom 244 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (¬ 𝑘 = 𝑋 → (𝐺‘𝑘) = ∅)) |
207 | 195, 206 | pm2.61d 179 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺‘𝑘) = ∅) |
208 | 39, 207 | suppss 8010 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 supp ∅) ⊆ (𝐹 supp ∅)) |
209 | | reldisj 4385 |
. . . . . . . . . . . . 13
⊢ ((𝐺 supp ∅) ⊆ (𝐹 supp ∅) → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋}))) |
210 | 208, 209 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋}))) |
211 | 176, 210 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})) |
212 | | uncom 4087 |
. . . . . . . . . . . . 13
⊢ ((𝐺 supp ∅) ∪ {𝑋}) = ({𝑋} ∪ (𝐺 supp ∅)) |
213 | 127, 212 | sseqtrdi 3971 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅))) |
214 | | ssundif 4418 |
. . . . . . . . . . . 12
⊢ ((𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)) ↔ ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅)) |
215 | 213, 214 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅)) |
216 | 211, 215 | eqssd 3938 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 supp ∅) = ((𝐹 supp ∅) ∖ {𝑋})) |
217 | 155, 173,
216 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 supp ∅) = (𝑂 “ ∪ dom
𝑂)) |
218 | | isores3 7206 |
. . . . . . . . 9
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ ∪ dom 𝑂 ⊆ dom 𝑂 ∧ (𝐺 supp ∅) = (𝑂 “ ∪ dom
𝑂)) → (𝑂 ↾ ∪ dom 𝑂) Isom E , E (∪
dom 𝑂, (𝐺 supp ∅))) |
219 | 26, 144, 217, 218 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (𝑂 ↾ ∪ dom
𝑂) Isom E , E (∪ dom 𝑂, (𝐺 supp ∅))) |
220 | | cantnfp1.k |
. . . . . . . . . . 11
⊢ 𝐾 = OrdIso( E , (𝐺 supp ∅)) |
221 | 1, 2, 3, 220, 5 | cantnfcl 9425 |
. . . . . . . . . 10
⊢ (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝐾 ∈ ω)) |
222 | 221 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → E We (𝐺 supp ∅)) |
223 | | epse 5572 |
. . . . . . . . 9
⊢ E Se
(𝐺 supp
∅) |
224 | 220 | oieu 9298 |
. . . . . . . . 9
⊢ (( E We
(𝐺 supp ∅) ∧ E Se
(𝐺 supp ∅)) →
((Ord ∪ dom 𝑂 ∧ (𝑂 ↾ ∪ dom
𝑂) Isom E , E (∪ dom 𝑂, (𝐺 supp ∅))) ↔ (∪ dom 𝑂 = dom 𝐾 ∧ (𝑂 ↾ ∪ dom
𝑂) = 𝐾))) |
225 | 222, 223,
224 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → ((Ord ∪ dom 𝑂 ∧ (𝑂 ↾ ∪ dom
𝑂) Isom E , E (∪ dom 𝑂, (𝐺 supp ∅))) ↔ (∪ dom 𝑂 = dom 𝐾 ∧ (𝑂 ↾ ∪ dom
𝑂) = 𝐾))) |
226 | 142, 219,
225 | mpbi2and 709 |
. . . . . . 7
⊢ (𝜑 → (∪ dom 𝑂 = dom 𝐾 ∧ (𝑂 ↾ ∪ dom
𝑂) = 𝐾)) |
227 | 226 | simpld 495 |
. . . . . 6
⊢ (𝜑 → ∪ dom 𝑂 = dom 𝐾) |
228 | 227 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → (𝑀‘∪ dom
𝑂) = (𝑀‘dom 𝐾)) |
229 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝑥 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂)) |
230 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝐻‘𝑥) = (𝐻‘∅)) |
231 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑀‘𝑥) = (𝑀‘∅)) |
232 | | cantnfp1.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐾‘𝑘)) ·o (𝐺‘(𝐾‘𝑘))) +o 𝑧)), ∅) |
233 | 232 | seqom0g 8287 |
. . . . . . . . . . . . 13
⊢ (∅
∈ V → (𝑀‘∅) = ∅) |
234 | 44, 233 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑀‘∅) =
∅ |
235 | 231, 234 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑀‘𝑥) = ∅) |
236 | 230, 235 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝐻‘𝑥) = (𝑀‘𝑥) ↔ (𝐻‘∅) = ∅)) |
237 | 229, 236 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ((𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥)) ↔ (∅ ∈ dom 𝑂 → (𝐻‘∅) =
∅))) |
238 | 237 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥))) ↔ (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) =
∅)))) |
239 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑂 ↔ 𝑦 ∈ dom 𝑂)) |
240 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐻‘𝑥) = (𝐻‘𝑦)) |
241 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑀‘𝑥) = (𝑀‘𝑦)) |
242 | 240, 241 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑥) = (𝑀‘𝑥) ↔ (𝐻‘𝑦) = (𝑀‘𝑦))) |
243 | 239, 242 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥)) ↔ (𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦)))) |
244 | 243 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥))) ↔ (𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦))))) |
245 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑂 ↔ suc 𝑦 ∈ dom 𝑂)) |
246 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → (𝐻‘𝑥) = (𝐻‘suc 𝑦)) |
247 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → (𝑀‘𝑥) = (𝑀‘suc 𝑦)) |
248 | 246, 247 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → ((𝐻‘𝑥) = (𝑀‘𝑥) ↔ (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))) |
249 | 245, 248 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥)) ↔ (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))) |
250 | 249 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥))) ↔ (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))) |
251 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = ∪
dom 𝑂 → (𝑥 ∈ dom 𝑂 ↔ ∪ dom
𝑂 ∈ dom 𝑂)) |
252 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
dom 𝑂 → (𝐻‘𝑥) = (𝐻‘∪ dom
𝑂)) |
253 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
dom 𝑂 → (𝑀‘𝑥) = (𝑀‘∪ dom
𝑂)) |
254 | 252, 253 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = ∪
dom 𝑂 → ((𝐻‘𝑥) = (𝑀‘𝑥) ↔ (𝐻‘∪ dom
𝑂) = (𝑀‘∪ dom
𝑂))) |
255 | 251, 254 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑥 = ∪
dom 𝑂 → ((𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥)) ↔ (∪ dom
𝑂 ∈ dom 𝑂 → (𝐻‘∪ dom
𝑂) = (𝑀‘∪ dom
𝑂)))) |
256 | 255 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑥 = ∪
dom 𝑂 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻‘𝑥) = (𝑀‘𝑥))) ↔ (𝜑 → (∪ dom
𝑂 ∈ dom 𝑂 → (𝐻‘∪ dom
𝑂) = (𝑀‘∪ dom
𝑂))))) |
257 | 11 | seqom0g 8287 |
. . . . . . . . 9
⊢ (∅
∈ dom 𝑂 → (𝐻‘∅) =
∅) |
258 | 257 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)) |
259 | | nnord 7720 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑂 ∈ ω → Ord
dom 𝑂) |
260 | 17, 259 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Ord dom 𝑂) |
261 | | ordtr 6280 |
. . . . . . . . . . . . . . 15
⊢ (Ord dom
𝑂 → Tr dom 𝑂) |
262 | 260, 261 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Tr dom 𝑂) |
263 | | trsuc 6350 |
. . . . . . . . . . . . . 14
⊢ ((Tr dom
𝑂 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂) |
264 | 262, 263 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂) |
265 | 264 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → (suc 𝑦 ∈ dom 𝑂 → 𝑦 ∈ dom 𝑂)) |
266 | 265 | imim1d 82 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦)))) |
267 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑦) = (𝑀‘𝑦) → (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝐻‘𝑦)) = (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝑀‘𝑦))) |
268 | | elnn 7723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → 𝑦 ∈ ω) |
269 | 268 | ancoms 459 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑂 ∈ ω ∧
𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω) |
270 | 17, 264, 269 | syl2an2r 682 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω) |
271 | 1, 2, 3, 4, 10, 11 | cantnfsuc 9428 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝐻‘𝑦))) |
272 | 270, 271 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐻‘suc 𝑦) = (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝐻‘𝑦))) |
273 | 1, 2, 3, 220, 5, 232 | cantnfsuc 9428 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝑀‘suc 𝑦) = (((𝐴 ↑o (𝐾‘𝑦)) ·o (𝐺‘(𝐾‘𝑦))) +o (𝑀‘𝑦))) |
274 | 270, 273 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴 ↑o (𝐾‘𝑦)) ·o (𝐺‘(𝐾‘𝑦))) +o (𝑀‘𝑦))) |
275 | 226 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑂 ↾ ∪ dom
𝑂) = 𝐾) |
276 | 275 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑂 ↾ ∪ dom
𝑂)‘𝑦) = (𝐾‘𝑦)) |
277 | 276 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 ↾ ∪ dom
𝑂)‘𝑦) = (𝐾‘𝑦)) |
278 | 14 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (suc 𝑦 ∈ dom 𝑂 ↔ suc 𝑦 ∈ suc ∪ dom
𝑂)) |
279 | 278 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → suc 𝑦 ∈ suc ∪ dom
𝑂) |
280 | 142 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → Ord ∪
dom 𝑂) |
281 | | ordsucelsuc 7669 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Ord
∪ dom 𝑂 → (𝑦 ∈ ∪ dom
𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂)) |
282 | 280, 281 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑦 ∈ ∪ dom
𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂)) |
283 | 279, 282 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ∪ dom
𝑂) |
284 | 283 | fvresd 6794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 ↾ ∪ dom
𝑂)‘𝑦) = (𝑂‘𝑦)) |
285 | 277, 284 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾‘𝑦) = (𝑂‘𝑦)) |
286 | 285 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐴 ↑o (𝐾‘𝑦)) = (𝐴 ↑o (𝑂‘𝑦))) |
287 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = (𝐾‘𝑦) → (𝑡 = 𝑋 ↔ (𝐾‘𝑦) = 𝑋)) |
288 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = (𝐾‘𝑦) → (𝐺‘𝑡) = (𝐺‘(𝐾‘𝑦))) |
289 | 287, 288 | ifbieq2d 4485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = (𝐾‘𝑦) → if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡)) = if((𝐾‘𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾‘𝑦)))) |
290 | | suppssdm 7993 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 supp ∅) ⊆ dom 𝐺 |
291 | 290, 39 | fssdm 6620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝐵) |
292 | 291 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺 supp ∅) ⊆ 𝐵) |
293 | 227 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ∪ dom
𝑂 = dom 𝐾) |
294 | 283, 293 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝐾) |
295 | 220 | oif 9289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐾:dom 𝐾⟶(𝐺 supp ∅) |
296 | 295 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ dom 𝐾 → (𝐾‘𝑦) ∈ (𝐺 supp ∅)) |
297 | 294, 296 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾‘𝑦) ∈ (𝐺 supp ∅)) |
298 | 292, 297 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾‘𝑦) ∈ 𝐵) |
299 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑌 ∈ 𝐴) |
300 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺‘(𝐾‘𝑦)) ∈ V |
301 | | ifexg 4508 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑌 ∈ 𝐴 ∧ (𝐺‘(𝐾‘𝑦)) ∈ V) → if((𝐾‘𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾‘𝑦))) ∈ V) |
302 | 299, 300,
301 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾‘𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾‘𝑦))) ∈ V) |
303 | 9, 289, 298, 302 | fvmptd3 6898 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾‘𝑦)) = if((𝐾‘𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾‘𝑦)))) |
304 | 285 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾‘𝑦)) = (𝐹‘(𝑂‘𝑦))) |
305 | 174 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ 𝑋 ∈ (𝐺 supp ∅)) |
306 | | nelneq 2863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐾‘𝑦) ∈ (𝐺 supp ∅) ∧ ¬ 𝑋 ∈ (𝐺 supp ∅)) → ¬ (𝐾‘𝑦) = 𝑋) |
307 | 297, 305,
306 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ (𝐾‘𝑦) = 𝑋) |
308 | 307 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾‘𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾‘𝑦))) = (𝐺‘(𝐾‘𝑦))) |
309 | 303, 304,
308 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺‘(𝐾‘𝑦)) = (𝐹‘(𝑂‘𝑦))) |
310 | 286, 309 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐴 ↑o (𝐾‘𝑦)) ·o (𝐺‘(𝐾‘𝑦))) = ((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦)))) |
311 | 310 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (((𝐴 ↑o (𝐾‘𝑦)) ·o (𝐺‘(𝐾‘𝑦))) +o (𝑀‘𝑦)) = (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝑀‘𝑦))) |
312 | 274, 311 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝑀‘𝑦))) |
313 | 272, 312 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻‘suc 𝑦) = (𝑀‘suc 𝑦) ↔ (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝐻‘𝑦)) = (((𝐴 ↑o (𝑂‘𝑦)) ·o (𝐹‘(𝑂‘𝑦))) +o (𝑀‘𝑦)))) |
314 | 267, 313 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻‘𝑦) = (𝑀‘𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))) |
315 | 314 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → (suc 𝑦 ∈ dom 𝑂 → ((𝐻‘𝑦) = (𝑀‘𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))) |
316 | 315 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝜑 → ((suc 𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))) |
317 | 266, 316 | syld 47 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))) |
318 | 317 | a2i 14 |
. . . . . . . . 9
⊢ ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))) |
319 | 318 | a1i 11 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻‘𝑦) = (𝑀‘𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))) |
320 | 238, 244,
250, 256, 258, 319 | finds 7745 |
. . . . . . 7
⊢ (∪ dom 𝑂 ∈ ω → (𝜑 → (∪ dom
𝑂 ∈ dom 𝑂 → (𝐻‘∪ dom
𝑂) = (𝑀‘∪ dom
𝑂)))) |
321 | 20, 320 | mpcom 38 |
. . . . . 6
⊢ (𝜑 → (∪ dom 𝑂 ∈ dom 𝑂 → (𝐻‘∪ dom
𝑂) = (𝑀‘∪ dom
𝑂))) |
322 | 62, 321 | mpd 15 |
. . . . 5
⊢ (𝜑 → (𝐻‘∪ dom
𝑂) = (𝑀‘∪ dom
𝑂)) |
323 | 1, 2, 3, 220, 5, 232 | cantnfval 9426 |
. . . . 5
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝑀‘dom 𝐾)) |
324 | 228, 322,
323 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → (𝐻‘∪ dom
𝑂) = ((𝐴 CNF 𝐵)‘𝐺)) |
325 | 140, 324 | oveq12d 7293 |
. . 3
⊢ (𝜑 → (((𝐴 ↑o (𝑂‘∪ dom
𝑂)) ·o
(𝐹‘(𝑂‘∪ dom
𝑂))) +o (𝐻‘∪ dom 𝑂)) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))) |
326 | 22, 325 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝐻‘suc ∪ dom
𝑂) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))) |
327 | 12, 15, 326 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))) |