MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem3 Structured version   Visualization version   GIF version

Theorem cantnfp1lem3 9438
Description: Lemma for cantnfp1 9439. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
cantnfp1.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑂𝑘)) ·o (𝐹‘(𝑂𝑘))) +o 𝑧)), ∅)
cantnfp1.k 𝐾 = OrdIso( E , (𝐺 supp ∅))
cantnfp1.m 𝑀 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐾𝑘)) ·o (𝐺‘(𝐾𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfp1lem3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
Distinct variable groups:   𝑡,𝑘,𝑧,𝐵   𝐴,𝑘,𝑡,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑡,𝑧   𝑘,𝐺,𝑡,𝑧   𝑘,𝐾,𝑡,𝑧   𝑘,𝑂,𝑧   𝜑,𝑘,𝑡,𝑧   𝑘,𝑌,𝑡,𝑧   𝑘,𝑋,𝑡,𝑧
Allowed substitution hints:   𝐹(𝑡)   𝐻(𝑧,𝑡,𝑘)   𝑀(𝑧,𝑡,𝑘)   𝑂(𝑡)

Proof of Theorem cantnfp1lem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfp1.o . . 3 𝑂 = OrdIso( E , (𝐹 supp ∅))
5 cantnfp1.g . . . 4 (𝜑𝐺𝑆)
6 cantnfp1.x . . . 4 (𝜑𝑋𝐵)
7 cantnfp1.y . . . 4 (𝜑𝑌𝐴)
8 cantnfp1.s . . . 4 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
9 cantnfp1.f . . . 4 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
101, 2, 3, 5, 6, 7, 8, 9cantnfp1lem1 9436 . . 3 (𝜑𝐹𝑆)
11 cantnfp1.h . . 3 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑂𝑘)) ·o (𝐹‘(𝑂𝑘))) +o 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 9426 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝑂))
13 cantnfp1.e . . . 4 (𝜑 → ∅ ∈ 𝑌)
141, 2, 3, 5, 6, 7, 8, 9, 13, 4cantnfp1lem2 9437 . . 3 (𝜑 → dom 𝑂 = suc dom 𝑂)
1514fveq2d 6778 . 2 (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc dom 𝑂))
161, 2, 3, 4, 10cantnfcl 9425 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
1716simprd 496 . . . . . 6 (𝜑 → dom 𝑂 ∈ ω)
1814, 17eqeltrrd 2840 . . . . 5 (𝜑 → suc dom 𝑂 ∈ ω)
19 peano2b 7729 . . . . 5 ( dom 𝑂 ∈ ω ↔ suc dom 𝑂 ∈ ω)
2018, 19sylibr 233 . . . 4 (𝜑 dom 𝑂 ∈ ω)
211, 2, 3, 4, 10, 11cantnfsuc 9428 . . . 4 ((𝜑 dom 𝑂 ∈ ω) → (𝐻‘suc dom 𝑂) = (((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) +o (𝐻 dom 𝑂)))
2220, 21mpdan 684 . . 3 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) +o (𝐻 dom 𝑂)))
23 ovexd 7310 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) ∈ V)
2416simpld 495 . . . . . . . . . . . . . . 15 (𝜑 → E We (𝐹 supp ∅))
254oiiso 9296 . . . . . . . . . . . . . . 15 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
2623, 24, 25syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
27 isof1o 7194 . . . . . . . . . . . . . 14 (𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
2826, 27syl 17 . . . . . . . . . . . . 13 (𝜑𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
29 f1ocnv 6728 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂)
30 f1of 6716 . . . . . . . . . . . . 13 (𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐹 supp ∅)⟶dom 𝑂)
3128, 29, 303syl 18 . . . . . . . . . . . 12 (𝜑𝑂:(𝐹 supp ∅)⟶dom 𝑂)
32 iftrue 4465 . . . . . . . . . . . . . . 15 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
339, 32, 6, 7fvmptd3 6898 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑋) = 𝑌)
3413ne0d 4269 . . . . . . . . . . . . . 14 (𝜑𝑌 ≠ ∅)
3533, 34eqnetrd 3011 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑋) ≠ ∅)
367adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐵) → 𝑌𝐴)
371, 2, 3cantnfs 9424 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
385, 37mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
3938simpld 495 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺:𝐵𝐴)
4039ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
4136, 40ifcld 4505 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
4241, 9fmptd 6988 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐵𝐴)
4342ffnd 6601 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐵)
44 0ex 5231 . . . . . . . . . . . . . . 15 ∅ ∈ V
4544a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
46 elsuppfn 7987 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
4743, 3, 45, 46syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
486, 35, 47mpbir2and 710 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐹 supp ∅))
4931, 48ffvelrnd 6962 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
50 elssuni 4871 . . . . . . . . . . 11 ((𝑂𝑋) ∈ dom 𝑂 → (𝑂𝑋) ⊆ dom 𝑂)
5149, 50syl 17 . . . . . . . . . 10 (𝜑 → (𝑂𝑋) ⊆ dom 𝑂)
524oicl 9288 . . . . . . . . . . . 12 Ord dom 𝑂
53 ordelon 6290 . . . . . . . . . . . 12 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
5452, 49, 53sylancr 587 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ On)
55 nnon 7718 . . . . . . . . . . . 12 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ On)
5620, 55syl 17 . . . . . . . . . . 11 (𝜑 dom 𝑂 ∈ On)
57 ontri1 6300 . . . . . . . . . . 11 (((𝑂𝑋) ∈ On ∧ dom 𝑂 ∈ On) → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
5854, 56, 57syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
5951, 58mpbid 231 . . . . . . . . 9 (𝜑 → ¬ dom 𝑂 ∈ (𝑂𝑋))
60 sucidg 6344 . . . . . . . . . . . . . 14 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ suc dom 𝑂)
6120, 60syl 17 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 ∈ suc dom 𝑂)
6261, 14eleqtrrd 2842 . . . . . . . . . . . 12 (𝜑 dom 𝑂 ∈ dom 𝑂)
63 isorel 7197 . . . . . . . . . . . 12 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ ( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
6426, 62, 49, 63syl12anc 834 . . . . . . . . . . 11 (𝜑 → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
65 fvex 6787 . . . . . . . . . . . 12 (𝑂𝑋) ∈ V
6665epeli 5497 . . . . . . . . . . 11 ( dom 𝑂 E (𝑂𝑋) ↔ dom 𝑂 ∈ (𝑂𝑋))
67 fvex 6787 . . . . . . . . . . . 12 (𝑂‘(𝑂𝑋)) ∈ V
6867epeli 5497 . . . . . . . . . . 11 ((𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)))
6964, 66, 683bitr3g 313 . . . . . . . . . 10 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋))))
70 f1ocnvfv2 7149 . . . . . . . . . . . 12 ((𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ∧ 𝑋 ∈ (𝐹 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
7128, 48, 70syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
7271eleq2d 2824 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
7369, 72bitrd 278 . . . . . . . . 9 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
7459, 73mtbid 324 . . . . . . . 8 (𝜑 → ¬ (𝑂 dom 𝑂) ∈ 𝑋)
758sseld 3920 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → (𝑂 dom 𝑂) ∈ 𝑋))
76 suppssdm 7993 . . . . . . . . . . . . . . . 16 (𝐹 supp ∅) ⊆ dom 𝐹
7776, 42fssdm 6620 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
78 onss 7634 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → 𝐵 ⊆ On)
793, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ On)
8077, 79sstrd 3931 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) ⊆ On)
814oif 9289 . . . . . . . . . . . . . . . 16 𝑂:dom 𝑂⟶(𝐹 supp ∅)
8281ffvelrni 6960 . . . . . . . . . . . . . . 15 ( dom 𝑂 ∈ dom 𝑂 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
8362, 82syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
8480, 83sseldd 3922 . . . . . . . . . . . . 13 (𝜑 → (𝑂 dom 𝑂) ∈ On)
85 eloni 6276 . . . . . . . . . . . . 13 ((𝑂 dom 𝑂) ∈ On → Ord (𝑂 dom 𝑂))
8684, 85syl 17 . . . . . . . . . . . 12 (𝜑 → Ord (𝑂 dom 𝑂))
87 ordn2lp 6286 . . . . . . . . . . . 12 (Ord (𝑂 dom 𝑂) → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
8886, 87syl 17 . . . . . . . . . . 11 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
89 imnan 400 . . . . . . . . . . 11 (((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)) ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
9088, 89sylibr 233 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
9175, 90syld 47 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
92 onelon 6291 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
933, 6, 92syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑋 ∈ On)
94 eloni 6276 . . . . . . . . . . . 12 (𝑋 ∈ On → Ord 𝑋)
9593, 94syl 17 . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
96 ordirr 6284 . . . . . . . . . . 11 (Ord 𝑋 → ¬ 𝑋𝑋)
9795, 96syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑋)
98 elsni 4578 . . . . . . . . . . . 12 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑂 dom 𝑂) = 𝑋)
9998eleq2d 2824 . . . . . . . . . . 11 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑋 ∈ (𝑂 dom 𝑂) ↔ 𝑋𝑋))
10099notbid 318 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ {𝑋} → (¬ 𝑋 ∈ (𝑂 dom 𝑂) ↔ ¬ 𝑋𝑋))
10197, 100syl5ibrcom 246 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ {𝑋} → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
102 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
103 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
104102, 103ifbieq2d 4485 . . . . . . . . . . . . . 14 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
105 eldifi 4061 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
106105adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
1077adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
108 fvex 6787 . . . . . . . . . . . . . . 15 (𝐺𝑘) ∈ V
109 ifexg 4508 . . . . . . . . . . . . . . 15 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
110107, 108, 109sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
1119, 104, 106, 110fvmptd3 6898 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
112 eldifn 4062 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
113112adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
114 velsn 4577 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
115 elun2 4111 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
116114, 115sylbir 234 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
117113, 116nsyl 140 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
118117iffalsed 4470 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
119 ssun1 4106 . . . . . . . . . . . . . . . 16 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
120 sscon 4073 . . . . . . . . . . . . . . . 16 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
121119, 120ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
122121sseli 3917 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
123 ssidd 3944 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
12439, 123, 3, 13suppssr 8012 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
125122, 124sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
126111, 118, 1253eqtrd 2782 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
12742, 126suppss 8010 . . . . . . . . . . 11 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
128127, 83sseldd 3922 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}))
129 elun 4083 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}) ↔ ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
130128, 129sylib 217 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
13191, 101, 130mpjaod 857 . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑂 dom 𝑂))
132 ioran 981 . . . . . . . 8 (¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)) ↔ (¬ (𝑂 dom 𝑂) ∈ 𝑋 ∧ ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
13374, 131, 132sylanbrc 583 . . . . . . 7 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
134 ordtri3 6302 . . . . . . . 8 ((Ord (𝑂 dom 𝑂) ∧ Ord 𝑋) → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
13586, 95, 134syl2anc 584 . . . . . . 7 (𝜑 → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
136133, 135mpbird 256 . . . . . 6 (𝜑 → (𝑂 dom 𝑂) = 𝑋)
137136oveq2d 7291 . . . . 5 (𝜑 → (𝐴o (𝑂 dom 𝑂)) = (𝐴o 𝑋))
138136fveq2d 6778 . . . . . 6 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = (𝐹𝑋))
139138, 33eqtrd 2778 . . . . 5 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = 𝑌)
140137, 139oveq12d 7293 . . . 4 (𝜑 → ((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) = ((𝐴o 𝑋) ·o 𝑌))
141 nnord 7720 . . . . . . . . 9 ( dom 𝑂 ∈ ω → Ord dom 𝑂)
14220, 141syl 17 . . . . . . . 8 (𝜑 → Ord dom 𝑂)
143 sssucid 6343 . . . . . . . . . 10 dom 𝑂 ⊆ suc dom 𝑂
144143, 14sseqtrrid 3974 . . . . . . . . 9 (𝜑 dom 𝑂 ⊆ dom 𝑂)
145 f1ofo 6723 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:dom 𝑂onto→(𝐹 supp ∅))
14628, 145syl 17 . . . . . . . . . . . 12 (𝜑𝑂:dom 𝑂onto→(𝐹 supp ∅))
147 foima 6693 . . . . . . . . . . . 12 (𝑂:dom 𝑂onto→(𝐹 supp ∅) → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
148146, 147syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
149 ffn 6600 . . . . . . . . . . . . . 14 (𝑂:dom 𝑂⟶(𝐹 supp ∅) → 𝑂 Fn dom 𝑂)
15081, 149ax-mp 5 . . . . . . . . . . . . 13 𝑂 Fn dom 𝑂
151 fnsnfv 6847 . . . . . . . . . . . . 13 ((𝑂 Fn dom 𝑂 dom 𝑂 ∈ dom 𝑂) → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
152150, 62, 151sylancr 587 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
153136sneqd 4573 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = {𝑋})
154152, 153eqtr3d 2780 . . . . . . . . . . 11 (𝜑 → (𝑂 “ { dom 𝑂}) = {𝑋})
155148, 154difeq12d 4058 . . . . . . . . . 10 (𝜑 → ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})) = ((𝐹 supp ∅) ∖ {𝑋}))
156 ordirr 6284 . . . . . . . . . . . . . . . . 17 (Ord dom 𝑂 → ¬ dom 𝑂 dom 𝑂)
157142, 156syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ dom 𝑂 dom 𝑂)
158 disjsn 4647 . . . . . . . . . . . . . . . 16 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ ¬ dom 𝑂 dom 𝑂)
159157, 158sylibr 233 . . . . . . . . . . . . . . 15 (𝜑 → ( dom 𝑂 ∩ { dom 𝑂}) = ∅)
160 disj3 4387 . . . . . . . . . . . . . . 15 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
161159, 160sylib 217 . . . . . . . . . . . . . 14 (𝜑 dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
162 difun2 4414 . . . . . . . . . . . . . 14 (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}) = ( dom 𝑂 ∖ { dom 𝑂})
163161, 162eqtr4di 2796 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
164 df-suc 6272 . . . . . . . . . . . . . . 15 suc dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂})
16514, 164eqtrdi 2794 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂}))
166165difeq1d 4056 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑂 ∖ { dom 𝑂}) = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
167163, 166eqtr4d 2781 . . . . . . . . . . . 12 (𝜑 dom 𝑂 = (dom 𝑂 ∖ { dom 𝑂}))
168167imaeq2d 5969 . . . . . . . . . . 11 (𝜑 → (𝑂 dom 𝑂) = (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})))
169 dff1o3 6722 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ↔ (𝑂:dom 𝑂onto→(𝐹 supp ∅) ∧ Fun 𝑂))
170169simprbi 497 . . . . . . . . . . . 12 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → Fun 𝑂)
171 imadif 6518 . . . . . . . . . . . 12 (Fun 𝑂 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
17228, 170, 1713syl 18 . . . . . . . . . . 11 (𝜑 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
173168, 172eqtrd 2778 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
1748, 97ssneldd 3924 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝐺 supp ∅))
175 disjsn 4647 . . . . . . . . . . . . 13 (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐺 supp ∅))
176174, 175sylibr 233 . . . . . . . . . . . 12 (𝜑 → ((𝐺 supp ∅) ∩ {𝑋}) = ∅)
177 fvex 6787 . . . . . . . . . . . . . . . . . . . . 21 (𝐺𝑋) ∈ V
178 dif1o 8330 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ ((𝐺𝑋) ∈ V ∧ (𝐺𝑋) ≠ ∅))
179177, 178mpbiran 706 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ (𝐺𝑋) ≠ ∅)
18039ffnd 6601 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn 𝐵)
181 elsuppfn 7987 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
182180, 3, 45, 181syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
183179a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1o) ↔ (𝐺𝑋) ≠ ∅))
184183bicomd 222 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1o)))
185184anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
186182, 185bitrd 278 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
1878sseld 3920 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋𝑋))
188186, 187sylbird 259 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o)) → 𝑋𝑋))
1896, 188mpand 692 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1o) → 𝑋𝑋))
190179, 189syl5bir 242 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺𝑋) ≠ ∅ → 𝑋𝑋))
191190necon1bd 2961 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 𝑋𝑋 → (𝐺𝑋) = ∅))
19297, 191mpd 15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝑋) = ∅)
193192adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑋) = ∅)
194 fveqeq2 6783 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → ((𝐺𝑘) = ∅ ↔ (𝐺𝑋) = ∅))
195193, 194syl5ibrcom 246 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝑘 = 𝑋 → (𝐺𝑘) = ∅))
196 eldifi 4061 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅)) → 𝑘𝐵)
197196adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑘𝐵)
1987adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑌𝐴)
199198, 108, 109sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2009, 104, 197, 199fvmptd3 6898 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
201 ssidd 3944 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅))
20242, 201, 3, 13suppssr 8012 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = ∅)
203200, 202eqtr3d 2780 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅)
204 iffalse 4468 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
205204eqeq1d 2740 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅ ↔ (𝐺𝑘) = ∅))
206203, 205syl5ibcom 244 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (¬ 𝑘 = 𝑋 → (𝐺𝑘) = ∅))
207195, 206pm2.61d 179 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑘) = ∅)
20839, 207suppss 8010 . . . . . . . . . . . . 13 (𝜑 → (𝐺 supp ∅) ⊆ (𝐹 supp ∅))
209 reldisj 4385 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ⊆ (𝐹 supp ∅) → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
210208, 209syl 17 . . . . . . . . . . . 12 (𝜑 → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
211176, 210mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋}))
212 uncom 4087 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ∪ {𝑋}) = ({𝑋} ∪ (𝐺 supp ∅))
213127, 212sseqtrdi 3971 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)))
214 ssundif 4418 . . . . . . . . . . . 12 ((𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)) ↔ ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
215213, 214sylib 217 . . . . . . . . . . 11 (𝜑 → ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
216211, 215eqssd 3938 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) = ((𝐹 supp ∅) ∖ {𝑋}))
217155, 173, 2163eqtr4rd 2789 . . . . . . . . 9 (𝜑 → (𝐺 supp ∅) = (𝑂 dom 𝑂))
218 isores3 7206 . . . . . . . . 9 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ dom 𝑂 ⊆ dom 𝑂 ∧ (𝐺 supp ∅) = (𝑂 dom 𝑂)) → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
21926, 144, 217, 218syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
220 cantnfp1.k . . . . . . . . . . 11 𝐾 = OrdIso( E , (𝐺 supp ∅))
2211, 2, 3, 220, 5cantnfcl 9425 . . . . . . . . . 10 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝐾 ∈ ω))
222221simpld 495 . . . . . . . . 9 (𝜑 → E We (𝐺 supp ∅))
223 epse 5572 . . . . . . . . 9 E Se (𝐺 supp ∅)
224220oieu 9298 . . . . . . . . 9 (( E We (𝐺 supp ∅) ∧ E Se (𝐺 supp ∅)) → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
225222, 223, 224sylancl 586 . . . . . . . 8 (𝜑 → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
226142, 219, 225mpbi2and 709 . . . . . . 7 (𝜑 → ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾))
227226simpld 495 . . . . . 6 (𝜑 dom 𝑂 = dom 𝐾)
228227fveq2d 6778 . . . . 5 (𝜑 → (𝑀 dom 𝑂) = (𝑀‘dom 𝐾))
229 eleq1 2826 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂))
230 fveq2 6774 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
231 fveq2 6774 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = (𝑀‘∅))
232 cantnfp1.m . . . . . . . . . . . . . 14 𝑀 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐾𝑘)) ·o (𝐺‘(𝐾𝑘))) +o 𝑧)), ∅)
233232seqom0g 8287 . . . . . . . . . . . . 13 (∅ ∈ V → (𝑀‘∅) = ∅)
23444, 233ax-mp 5 . . . . . . . . . . . 12 (𝑀‘∅) = ∅
235231, 234eqtrdi 2794 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑀𝑥) = ∅)
236230, 235eqeq12d 2754 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘∅) = ∅))
237229, 236imbi12d 345 . . . . . . . . 9 (𝑥 = ∅ → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)))
238237imbi2d 341 . . . . . . . 8 (𝑥 = ∅ → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))))
239 eleq1 2826 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
240 fveq2 6774 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
241 fveq2 6774 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
242240, 241eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻𝑦) = (𝑀𝑦)))
243239, 242imbi12d 345 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
244243imbi2d 341 . . . . . . . 8 (𝑥 = 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)))))
245 eleq1 2826 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑂 ↔ suc 𝑦 ∈ dom 𝑂))
246 fveq2 6774 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
247 fveq2 6774 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑀𝑥) = (𝑀‘suc 𝑦))
248246, 247eqeq12d 2754 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
249245, 248imbi12d 345 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
250249imbi2d 341 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
251 eleq1 2826 . . . . . . . . . 10 (𝑥 = dom 𝑂 → (𝑥 ∈ dom 𝑂 dom 𝑂 ∈ dom 𝑂))
252 fveq2 6774 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝐻𝑥) = (𝐻 dom 𝑂))
253 fveq2 6774 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝑀𝑥) = (𝑀 dom 𝑂))
254252, 253eqeq12d 2754 . . . . . . . . . 10 (𝑥 = dom 𝑂 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
255251, 254imbi12d 345 . . . . . . . . 9 (𝑥 = dom 𝑂 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
256255imbi2d 341 . . . . . . . 8 (𝑥 = dom 𝑂 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))))
25711seqom0g 8287 . . . . . . . . 9 (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)
258257a1i 11 . . . . . . . 8 (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))
259 nnord 7720 . . . . . . . . . . . . . . . 16 (dom 𝑂 ∈ ω → Ord dom 𝑂)
26017, 259syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Ord dom 𝑂)
261 ordtr 6280 . . . . . . . . . . . . . . 15 (Ord dom 𝑂 → Tr dom 𝑂)
262260, 261syl 17 . . . . . . . . . . . . . 14 (𝜑 → Tr dom 𝑂)
263 trsuc 6350 . . . . . . . . . . . . . 14 ((Tr dom 𝑂 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
264262, 263sylan 580 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
265264ex 413 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
266265imim1d 82 . . . . . . . . . . 11 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
267 oveq2 7283 . . . . . . . . . . . . . 14 ((𝐻𝑦) = (𝑀𝑦) → (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦)))
268 elnn 7723 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → 𝑦 ∈ ω)
269268ancoms 459 . . . . . . . . . . . . . . . . 17 ((dom 𝑂 ∈ ω ∧ 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
27017, 264, 269syl2an2r 682 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
2711, 2, 3, 4, 10, 11cantnfsuc 9428 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)))
272270, 271syldan 591 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐻‘suc 𝑦) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)))
2731, 2, 3, 220, 5, 232cantnfsuc 9428 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ω) → (𝑀‘suc 𝑦) = (((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) +o (𝑀𝑦)))
274270, 273syldan 591 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) +o (𝑀𝑦)))
275226simprd 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑂 dom 𝑂) = 𝐾)
276275fveq1d 6776 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
277276adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
27814eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (suc 𝑦 ∈ dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
279278biimpa 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → suc 𝑦 ∈ suc dom 𝑂)
280142adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → Ord dom 𝑂)
281 ordsucelsuc 7669 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord dom 𝑂 → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
282280, 281syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
283279, 282mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 dom 𝑂)
284283fvresd 6794 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝑂𝑦))
285277, 284eqtr3d 2780 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) = (𝑂𝑦))
286285oveq2d 7291 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐴o (𝐾𝑦)) = (𝐴o (𝑂𝑦)))
287 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐾𝑦) → (𝑡 = 𝑋 ↔ (𝐾𝑦) = 𝑋))
288 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐾𝑦) → (𝐺𝑡) = (𝐺‘(𝐾𝑦)))
289287, 288ifbieq2d 4485 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐾𝑦) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
290 suppssdm 7993 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 supp ∅) ⊆ dom 𝐺
291290, 39fssdm 6620 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
292291adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺 supp ∅) ⊆ 𝐵)
293227adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → dom 𝑂 = dom 𝐾)
294283, 293eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝐾)
295220oif 9289 . . . . . . . . . . . . . . . . . . . . . . 23 𝐾:dom 𝐾⟶(𝐺 supp ∅)
296295ffvelrni 6960 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ dom 𝐾 → (𝐾𝑦) ∈ (𝐺 supp ∅))
297294, 296syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ (𝐺 supp ∅))
298292, 297sseldd 3922 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ 𝐵)
2997adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑌𝐴)
300 fvex 6787 . . . . . . . . . . . . . . . . . . . . 21 (𝐺‘(𝐾𝑦)) ∈ V
301 ifexg 4508 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ (𝐺‘(𝐾𝑦)) ∈ V) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
302299, 300, 301sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
3039, 289, 298, 302fvmptd3 6898 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
304285fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
305174adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ 𝑋 ∈ (𝐺 supp ∅))
306 nelneq 2863 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝑦) ∈ (𝐺 supp ∅) ∧ ¬ 𝑋 ∈ (𝐺 supp ∅)) → ¬ (𝐾𝑦) = 𝑋)
307297, 305, 306syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ (𝐾𝑦) = 𝑋)
308307iffalsed 4470 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) = (𝐺‘(𝐾𝑦)))
309303, 304, 3083eqtr3rd 2787 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
310286, 309oveq12d 7293 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) = ((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))))
311310oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) +o (𝑀𝑦)) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦)))
312274, 311eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦)))
313272, 312eqeq12d 2754 . . . . . . . . . . . . . 14 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻‘suc 𝑦) = (𝑀‘suc 𝑦) ↔ (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦))))
314267, 313syl5ibr 245 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
315314ex 413 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂 → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
316315a2d 29 . . . . . . . . . . 11 (𝜑 → ((suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
317266, 316syld 47 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
318317a2i 14 . . . . . . . . 9 ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
319318a1i 11 . . . . . . . 8 (𝑦 ∈ ω → ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
320238, 244, 250, 256, 258, 319finds 7745 . . . . . . 7 ( dom 𝑂 ∈ ω → (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
32120, 320mpcom 38 . . . . . 6 (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
32262, 321mpd 15 . . . . 5 (𝜑 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))
3231, 2, 3, 220, 5, 232cantnfval 9426 . . . . 5 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝑀‘dom 𝐾))
324228, 322, 3233eqtr4d 2788 . . . 4 (𝜑 → (𝐻 dom 𝑂) = ((𝐴 CNF 𝐵)‘𝐺))
325140, 324oveq12d 7293 . . 3 (𝜑 → (((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) +o (𝐻 dom 𝑂)) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
32622, 325eqtrd 2778 . 2 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
32712, 15, 3263eqtrd 2782 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  ifcif 4459  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157  Tr wtr 5191   E cep 5494   Se wse 5542   We wwe 5543  ccnv 5588  dom cdm 5589  cres 5591  cima 5592  Ord word 6265  Oncon0 6266  suc csuc 6268  Fun wfun 6427   Fn wfn 6428  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434  (class class class)co 7275  cmpo 7277  ωcom 7712   supp csupp 7977  seqωcseqom 8278  1oc1o 8290   +o coa 8294   ·o comu 8295  o coe 8296   finSupp cfsupp 9128  OrdIsocoi 9268   CNF ccnf 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-cnf 9420
This theorem is referenced by:  cantnfp1  9439
  Copyright terms: Public domain W3C validator