MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem3 Structured version   Visualization version   GIF version

Theorem cantnfp1lem3 9570
Description: Lemma for cantnfp1 9571. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
cantnfp1.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑂𝑘)) ·o (𝐹‘(𝑂𝑘))) +o 𝑧)), ∅)
cantnfp1.k 𝐾 = OrdIso( E , (𝐺 supp ∅))
cantnfp1.m 𝑀 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐾𝑘)) ·o (𝐺‘(𝐾𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfp1lem3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
Distinct variable groups:   𝑡,𝑘,𝑧,𝐵   𝐴,𝑘,𝑡,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑡,𝑧   𝑘,𝐺,𝑡,𝑧   𝑘,𝐾,𝑡,𝑧   𝑘,𝑂,𝑧   𝜑,𝑘,𝑡,𝑧   𝑘,𝑌,𝑡,𝑧   𝑘,𝑋,𝑡,𝑧
Allowed substitution hints:   𝐹(𝑡)   𝐻(𝑧,𝑡,𝑘)   𝑀(𝑧,𝑡,𝑘)   𝑂(𝑡)

Proof of Theorem cantnfp1lem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfp1.o . . 3 𝑂 = OrdIso( E , (𝐹 supp ∅))
5 cantnfp1.g . . . 4 (𝜑𝐺𝑆)
6 cantnfp1.x . . . 4 (𝜑𝑋𝐵)
7 cantnfp1.y . . . 4 (𝜑𝑌𝐴)
8 cantnfp1.s . . . 4 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
9 cantnfp1.f . . . 4 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
101, 2, 3, 5, 6, 7, 8, 9cantnfp1lem1 9568 . . 3 (𝜑𝐹𝑆)
11 cantnfp1.h . . 3 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑂𝑘)) ·o (𝐹‘(𝑂𝑘))) +o 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 9558 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝑂))
13 cantnfp1.e . . . 4 (𝜑 → ∅ ∈ 𝑌)
141, 2, 3, 5, 6, 7, 8, 9, 13, 4cantnfp1lem2 9569 . . 3 (𝜑 → dom 𝑂 = suc dom 𝑂)
1514fveq2d 6826 . 2 (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc dom 𝑂))
161, 2, 3, 4, 10cantnfcl 9557 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
1716simprd 495 . . . . . 6 (𝜑 → dom 𝑂 ∈ ω)
1814, 17eqeltrrd 2832 . . . . 5 (𝜑 → suc dom 𝑂 ∈ ω)
19 peano2b 7813 . . . . 5 ( dom 𝑂 ∈ ω ↔ suc dom 𝑂 ∈ ω)
2018, 19sylibr 234 . . . 4 (𝜑 dom 𝑂 ∈ ω)
211, 2, 3, 4, 10, 11cantnfsuc 9560 . . . 4 ((𝜑 dom 𝑂 ∈ ω) → (𝐻‘suc dom 𝑂) = (((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) +o (𝐻 dom 𝑂)))
2220, 21mpdan 687 . . 3 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) +o (𝐻 dom 𝑂)))
23 ovexd 7381 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) ∈ V)
2416simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → E We (𝐹 supp ∅))
254oiiso 9423 . . . . . . . . . . . . . . 15 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
2623, 24, 25syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
27 isof1o 7257 . . . . . . . . . . . . . 14 (𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
2826, 27syl 17 . . . . . . . . . . . . 13 (𝜑𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
29 f1ocnv 6775 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂)
30 f1of 6763 . . . . . . . . . . . . 13 (𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐹 supp ∅)⟶dom 𝑂)
3128, 29, 303syl 18 . . . . . . . . . . . 12 (𝜑𝑂:(𝐹 supp ∅)⟶dom 𝑂)
32 iftrue 4478 . . . . . . . . . . . . . . 15 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
339, 32, 6, 7fvmptd3 6952 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑋) = 𝑌)
3413ne0d 4289 . . . . . . . . . . . . . 14 (𝜑𝑌 ≠ ∅)
3533, 34eqnetrd 2995 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑋) ≠ ∅)
367adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐵) → 𝑌𝐴)
371, 2, 3cantnfs 9556 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
385, 37mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
3938simpld 494 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺:𝐵𝐴)
4039ffvelcdmda 7017 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
4136, 40ifcld 4519 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
4241, 9fmptd 7047 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐵𝐴)
4342ffnd 6652 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐵)
44 0ex 5243 . . . . . . . . . . . . . . 15 ∅ ∈ V
4544a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
46 elsuppfn 8100 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
4743, 3, 45, 46syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
486, 35, 47mpbir2and 713 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐹 supp ∅))
4931, 48ffvelcdmd 7018 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
50 elssuni 4887 . . . . . . . . . . 11 ((𝑂𝑋) ∈ dom 𝑂 → (𝑂𝑋) ⊆ dom 𝑂)
5149, 50syl 17 . . . . . . . . . 10 (𝜑 → (𝑂𝑋) ⊆ dom 𝑂)
524oicl 9415 . . . . . . . . . . . 12 Ord dom 𝑂
53 ordelon 6330 . . . . . . . . . . . 12 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
5452, 49, 53sylancr 587 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ On)
55 nnon 7802 . . . . . . . . . . . 12 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ On)
5620, 55syl 17 . . . . . . . . . . 11 (𝜑 dom 𝑂 ∈ On)
57 ontri1 6340 . . . . . . . . . . 11 (((𝑂𝑋) ∈ On ∧ dom 𝑂 ∈ On) → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
5854, 56, 57syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
5951, 58mpbid 232 . . . . . . . . 9 (𝜑 → ¬ dom 𝑂 ∈ (𝑂𝑋))
60 sucidg 6389 . . . . . . . . . . . . . 14 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ suc dom 𝑂)
6120, 60syl 17 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 ∈ suc dom 𝑂)
6261, 14eleqtrrd 2834 . . . . . . . . . . . 12 (𝜑 dom 𝑂 ∈ dom 𝑂)
63 isorel 7260 . . . . . . . . . . . 12 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ ( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
6426, 62, 49, 63syl12anc 836 . . . . . . . . . . 11 (𝜑 → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
65 fvex 6835 . . . . . . . . . . . 12 (𝑂𝑋) ∈ V
6665epeli 5516 . . . . . . . . . . 11 ( dom 𝑂 E (𝑂𝑋) ↔ dom 𝑂 ∈ (𝑂𝑋))
67 fvex 6835 . . . . . . . . . . . 12 (𝑂‘(𝑂𝑋)) ∈ V
6867epeli 5516 . . . . . . . . . . 11 ((𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)))
6964, 66, 683bitr3g 313 . . . . . . . . . 10 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋))))
70 f1ocnvfv2 7211 . . . . . . . . . . . 12 ((𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ∧ 𝑋 ∈ (𝐹 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
7128, 48, 70syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
7271eleq2d 2817 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
7369, 72bitrd 279 . . . . . . . . 9 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
7459, 73mtbid 324 . . . . . . . 8 (𝜑 → ¬ (𝑂 dom 𝑂) ∈ 𝑋)
758sseld 3928 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → (𝑂 dom 𝑂) ∈ 𝑋))
76 suppssdm 8107 . . . . . . . . . . . . . . . 16 (𝐹 supp ∅) ⊆ dom 𝐹
7776, 42fssdm 6670 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
78 onss 7718 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → 𝐵 ⊆ On)
793, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ On)
8077, 79sstrd 3940 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) ⊆ On)
814oif 9416 . . . . . . . . . . . . . . . 16 𝑂:dom 𝑂⟶(𝐹 supp ∅)
8281ffvelcdmi 7016 . . . . . . . . . . . . . . 15 ( dom 𝑂 ∈ dom 𝑂 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
8362, 82syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
8480, 83sseldd 3930 . . . . . . . . . . . . 13 (𝜑 → (𝑂 dom 𝑂) ∈ On)
85 eloni 6316 . . . . . . . . . . . . 13 ((𝑂 dom 𝑂) ∈ On → Ord (𝑂 dom 𝑂))
8684, 85syl 17 . . . . . . . . . . . 12 (𝜑 → Ord (𝑂 dom 𝑂))
87 ordn2lp 6326 . . . . . . . . . . . 12 (Ord (𝑂 dom 𝑂) → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
8886, 87syl 17 . . . . . . . . . . 11 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
89 imnan 399 . . . . . . . . . . 11 (((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)) ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
9088, 89sylibr 234 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
9175, 90syld 47 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
92 onelon 6331 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
933, 6, 92syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑋 ∈ On)
94 eloni 6316 . . . . . . . . . . . 12 (𝑋 ∈ On → Ord 𝑋)
9593, 94syl 17 . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
96 ordirr 6324 . . . . . . . . . . 11 (Ord 𝑋 → ¬ 𝑋𝑋)
9795, 96syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑋)
98 elsni 4590 . . . . . . . . . . . 12 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑂 dom 𝑂) = 𝑋)
9998eleq2d 2817 . . . . . . . . . . 11 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑋 ∈ (𝑂 dom 𝑂) ↔ 𝑋𝑋))
10099notbid 318 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ {𝑋} → (¬ 𝑋 ∈ (𝑂 dom 𝑂) ↔ ¬ 𝑋𝑋))
10197, 100syl5ibrcom 247 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ {𝑋} → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
102 eqeq1 2735 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
103 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
104102, 103ifbieq2d 4499 . . . . . . . . . . . . . 14 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
105 eldifi 4078 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
106105adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
1077adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
108 fvex 6835 . . . . . . . . . . . . . . 15 (𝐺𝑘) ∈ V
109 ifexg 4522 . . . . . . . . . . . . . . 15 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
110107, 108, 109sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
1119, 104, 106, 110fvmptd3 6952 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
112 eldifn 4079 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
113112adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
114 velsn 4589 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
115 elun2 4130 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
116114, 115sylbir 235 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
117113, 116nsyl 140 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
118117iffalsed 4483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
119 ssun1 4125 . . . . . . . . . . . . . . . 16 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
120 sscon 4090 . . . . . . . . . . . . . . . 16 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
121119, 120ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
122121sseli 3925 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
123 ssidd 3953 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
12439, 123, 3, 13suppssr 8125 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
125122, 124sylan2 593 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
126111, 118, 1253eqtrd 2770 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
12742, 126suppss 8124 . . . . . . . . . . 11 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
128127, 83sseldd 3930 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}))
129 elun 4100 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}) ↔ ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
130128, 129sylib 218 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
13191, 101, 130mpjaod 860 . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑂 dom 𝑂))
132 ioran 985 . . . . . . . 8 (¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)) ↔ (¬ (𝑂 dom 𝑂) ∈ 𝑋 ∧ ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
13374, 131, 132sylanbrc 583 . . . . . . 7 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
134 ordtri3 6342 . . . . . . . 8 ((Ord (𝑂 dom 𝑂) ∧ Ord 𝑋) → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
13586, 95, 134syl2anc 584 . . . . . . 7 (𝜑 → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
136133, 135mpbird 257 . . . . . 6 (𝜑 → (𝑂 dom 𝑂) = 𝑋)
137136oveq2d 7362 . . . . 5 (𝜑 → (𝐴o (𝑂 dom 𝑂)) = (𝐴o 𝑋))
138136fveq2d 6826 . . . . . 6 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = (𝐹𝑋))
139138, 33eqtrd 2766 . . . . 5 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = 𝑌)
140137, 139oveq12d 7364 . . . 4 (𝜑 → ((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) = ((𝐴o 𝑋) ·o 𝑌))
141 nnord 7804 . . . . . . . . 9 ( dom 𝑂 ∈ ω → Ord dom 𝑂)
14220, 141syl 17 . . . . . . . 8 (𝜑 → Ord dom 𝑂)
143 sssucid 6388 . . . . . . . . . 10 dom 𝑂 ⊆ suc dom 𝑂
144143, 14sseqtrrid 3973 . . . . . . . . 9 (𝜑 dom 𝑂 ⊆ dom 𝑂)
145 f1ofo 6770 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:dom 𝑂onto→(𝐹 supp ∅))
14628, 145syl 17 . . . . . . . . . . . 12 (𝜑𝑂:dom 𝑂onto→(𝐹 supp ∅))
147 foima 6740 . . . . . . . . . . . 12 (𝑂:dom 𝑂onto→(𝐹 supp ∅) → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
148146, 147syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
149 ffn 6651 . . . . . . . . . . . . . 14 (𝑂:dom 𝑂⟶(𝐹 supp ∅) → 𝑂 Fn dom 𝑂)
15081, 149ax-mp 5 . . . . . . . . . . . . 13 𝑂 Fn dom 𝑂
151 fnsnfv 6901 . . . . . . . . . . . . 13 ((𝑂 Fn dom 𝑂 dom 𝑂 ∈ dom 𝑂) → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
152150, 62, 151sylancr 587 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
153136sneqd 4585 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = {𝑋})
154152, 153eqtr3d 2768 . . . . . . . . . . 11 (𝜑 → (𝑂 “ { dom 𝑂}) = {𝑋})
155148, 154difeq12d 4074 . . . . . . . . . 10 (𝜑 → ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})) = ((𝐹 supp ∅) ∖ {𝑋}))
156 ordirr 6324 . . . . . . . . . . . . . . . . 17 (Ord dom 𝑂 → ¬ dom 𝑂 dom 𝑂)
157142, 156syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ dom 𝑂 dom 𝑂)
158 disjsn 4661 . . . . . . . . . . . . . . . 16 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ ¬ dom 𝑂 dom 𝑂)
159157, 158sylibr 234 . . . . . . . . . . . . . . 15 (𝜑 → ( dom 𝑂 ∩ { dom 𝑂}) = ∅)
160 disj3 4401 . . . . . . . . . . . . . . 15 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
161159, 160sylib 218 . . . . . . . . . . . . . 14 (𝜑 dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
162 difun2 4428 . . . . . . . . . . . . . 14 (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}) = ( dom 𝑂 ∖ { dom 𝑂})
163161, 162eqtr4di 2784 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
164 df-suc 6312 . . . . . . . . . . . . . . 15 suc dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂})
16514, 164eqtrdi 2782 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂}))
166165difeq1d 4072 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑂 ∖ { dom 𝑂}) = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
167163, 166eqtr4d 2769 . . . . . . . . . . . 12 (𝜑 dom 𝑂 = (dom 𝑂 ∖ { dom 𝑂}))
168167imaeq2d 6008 . . . . . . . . . . 11 (𝜑 → (𝑂 dom 𝑂) = (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})))
169 dff1o3 6769 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ↔ (𝑂:dom 𝑂onto→(𝐹 supp ∅) ∧ Fun 𝑂))
170169simprbi 496 . . . . . . . . . . . 12 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → Fun 𝑂)
171 imadif 6565 . . . . . . . . . . . 12 (Fun 𝑂 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
17228, 170, 1713syl 18 . . . . . . . . . . 11 (𝜑 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
173168, 172eqtrd 2766 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
1748, 97ssneldd 3932 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝐺 supp ∅))
175 disjsn 4661 . . . . . . . . . . . . 13 (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐺 supp ∅))
176174, 175sylibr 234 . . . . . . . . . . . 12 (𝜑 → ((𝐺 supp ∅) ∩ {𝑋}) = ∅)
177 fvex 6835 . . . . . . . . . . . . . . . . . . . . 21 (𝐺𝑋) ∈ V
178 dif1o 8415 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ ((𝐺𝑋) ∈ V ∧ (𝐺𝑋) ≠ ∅))
179177, 178mpbiran 709 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑋) ∈ (V ∖ 1o) ↔ (𝐺𝑋) ≠ ∅)
18039ffnd 6652 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn 𝐵)
181 elsuppfn 8100 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
182180, 3, 45, 181syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
183179a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1o) ↔ (𝐺𝑋) ≠ ∅))
184183bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1o)))
185184anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
186182, 185bitrd 279 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o))))
1878sseld 3928 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋𝑋))
188186, 187sylbird 260 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1o)) → 𝑋𝑋))
1896, 188mpand 695 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1o) → 𝑋𝑋))
190179, 189biimtrrid 243 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺𝑋) ≠ ∅ → 𝑋𝑋))
191190necon1bd 2946 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 𝑋𝑋 → (𝐺𝑋) = ∅))
19297, 191mpd 15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝑋) = ∅)
193192adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑋) = ∅)
194 fveqeq2 6831 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → ((𝐺𝑘) = ∅ ↔ (𝐺𝑋) = ∅))
195193, 194syl5ibrcom 247 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝑘 = 𝑋 → (𝐺𝑘) = ∅))
196 eldifi 4078 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅)) → 𝑘𝐵)
197196adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑘𝐵)
1987adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑌𝐴)
199198, 108, 109sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
2009, 104, 197, 199fvmptd3 6952 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
201 ssidd 3953 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅))
20242, 201, 3, 13suppssr 8125 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = ∅)
203200, 202eqtr3d 2768 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅)
204 iffalse 4481 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
205204eqeq1d 2733 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅ ↔ (𝐺𝑘) = ∅))
206203, 205syl5ibcom 245 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (¬ 𝑘 = 𝑋 → (𝐺𝑘) = ∅))
207195, 206pm2.61d 179 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑘) = ∅)
20839, 207suppss 8124 . . . . . . . . . . . . 13 (𝜑 → (𝐺 supp ∅) ⊆ (𝐹 supp ∅))
209 reldisj 4400 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ⊆ (𝐹 supp ∅) → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
210208, 209syl 17 . . . . . . . . . . . 12 (𝜑 → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
211176, 210mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋}))
212 uncom 4105 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ∪ {𝑋}) = ({𝑋} ∪ (𝐺 supp ∅))
213127, 212sseqtrdi 3970 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)))
214 ssundif 4435 . . . . . . . . . . . 12 ((𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)) ↔ ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
215213, 214sylib 218 . . . . . . . . . . 11 (𝜑 → ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
216211, 215eqssd 3947 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) = ((𝐹 supp ∅) ∖ {𝑋}))
217155, 173, 2163eqtr4rd 2777 . . . . . . . . 9 (𝜑 → (𝐺 supp ∅) = (𝑂 dom 𝑂))
218 isores3 7269 . . . . . . . . 9 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ dom 𝑂 ⊆ dom 𝑂 ∧ (𝐺 supp ∅) = (𝑂 dom 𝑂)) → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
21926, 144, 217, 218syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
220 cantnfp1.k . . . . . . . . . . 11 𝐾 = OrdIso( E , (𝐺 supp ∅))
2211, 2, 3, 220, 5cantnfcl 9557 . . . . . . . . . 10 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝐾 ∈ ω))
222221simpld 494 . . . . . . . . 9 (𝜑 → E We (𝐺 supp ∅))
223 epse 5596 . . . . . . . . 9 E Se (𝐺 supp ∅)
224220oieu 9425 . . . . . . . . 9 (( E We (𝐺 supp ∅) ∧ E Se (𝐺 supp ∅)) → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
225222, 223, 224sylancl 586 . . . . . . . 8 (𝜑 → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
226142, 219, 225mpbi2and 712 . . . . . . 7 (𝜑 → ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾))
227226simpld 494 . . . . . 6 (𝜑 dom 𝑂 = dom 𝐾)
228227fveq2d 6826 . . . . 5 (𝜑 → (𝑀 dom 𝑂) = (𝑀‘dom 𝐾))
229 eleq1 2819 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂))
230 fveq2 6822 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
231 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = (𝑀‘∅))
232 cantnfp1.m . . . . . . . . . . . . . 14 𝑀 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐾𝑘)) ·o (𝐺‘(𝐾𝑘))) +o 𝑧)), ∅)
233232seqom0g 8375 . . . . . . . . . . . . 13 (∅ ∈ V → (𝑀‘∅) = ∅)
23444, 233ax-mp 5 . . . . . . . . . . . 12 (𝑀‘∅) = ∅
235231, 234eqtrdi 2782 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑀𝑥) = ∅)
236230, 235eqeq12d 2747 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘∅) = ∅))
237229, 236imbi12d 344 . . . . . . . . 9 (𝑥 = ∅ → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)))
238237imbi2d 340 . . . . . . . 8 (𝑥 = ∅ → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))))
239 eleq1 2819 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
240 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
241 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
242240, 241eqeq12d 2747 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻𝑦) = (𝑀𝑦)))
243239, 242imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
244243imbi2d 340 . . . . . . . 8 (𝑥 = 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)))))
245 eleq1 2819 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑂 ↔ suc 𝑦 ∈ dom 𝑂))
246 fveq2 6822 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
247 fveq2 6822 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑀𝑥) = (𝑀‘suc 𝑦))
248246, 247eqeq12d 2747 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
249245, 248imbi12d 344 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
250249imbi2d 340 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
251 eleq1 2819 . . . . . . . . . 10 (𝑥 = dom 𝑂 → (𝑥 ∈ dom 𝑂 dom 𝑂 ∈ dom 𝑂))
252 fveq2 6822 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝐻𝑥) = (𝐻 dom 𝑂))
253 fveq2 6822 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝑀𝑥) = (𝑀 dom 𝑂))
254252, 253eqeq12d 2747 . . . . . . . . . 10 (𝑥 = dom 𝑂 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
255251, 254imbi12d 344 . . . . . . . . 9 (𝑥 = dom 𝑂 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
256255imbi2d 340 . . . . . . . 8 (𝑥 = dom 𝑂 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))))
25711seqom0g 8375 . . . . . . . . 9 (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)
258257a1i 11 . . . . . . . 8 (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))
259 nnord 7804 . . . . . . . . . . . . . . . 16 (dom 𝑂 ∈ ω → Ord dom 𝑂)
26017, 259syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Ord dom 𝑂)
261 ordtr 6320 . . . . . . . . . . . . . . 15 (Ord dom 𝑂 → Tr dom 𝑂)
262260, 261syl 17 . . . . . . . . . . . . . 14 (𝜑 → Tr dom 𝑂)
263 trsuc 6395 . . . . . . . . . . . . . 14 ((Tr dom 𝑂 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
264262, 263sylan 580 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
265264ex 412 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
266265imim1d 82 . . . . . . . . . . 11 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
267 oveq2 7354 . . . . . . . . . . . . . 14 ((𝐻𝑦) = (𝑀𝑦) → (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦)))
268 elnn 7807 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → 𝑦 ∈ ω)
269268ancoms 458 . . . . . . . . . . . . . . . . 17 ((dom 𝑂 ∈ ω ∧ 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
27017, 264, 269syl2an2r 685 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
2711, 2, 3, 4, 10, 11cantnfsuc 9560 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)))
272270, 271syldan 591 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐻‘suc 𝑦) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)))
2731, 2, 3, 220, 5, 232cantnfsuc 9560 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ω) → (𝑀‘suc 𝑦) = (((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) +o (𝑀𝑦)))
274270, 273syldan 591 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) +o (𝑀𝑦)))
275226simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑂 dom 𝑂) = 𝐾)
276275fveq1d 6824 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
277276adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
27814eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (suc 𝑦 ∈ dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
279278biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → suc 𝑦 ∈ suc dom 𝑂)
280142adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → Ord dom 𝑂)
281 ordsucelsuc 7752 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord dom 𝑂 → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
282280, 281syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
283279, 282mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 dom 𝑂)
284283fvresd 6842 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝑂𝑦))
285277, 284eqtr3d 2768 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) = (𝑂𝑦))
286285oveq2d 7362 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐴o (𝐾𝑦)) = (𝐴o (𝑂𝑦)))
287 eqeq1 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐾𝑦) → (𝑡 = 𝑋 ↔ (𝐾𝑦) = 𝑋))
288 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐾𝑦) → (𝐺𝑡) = (𝐺‘(𝐾𝑦)))
289287, 288ifbieq2d 4499 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐾𝑦) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
290 suppssdm 8107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 supp ∅) ⊆ dom 𝐺
291290, 39fssdm 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
292291adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺 supp ∅) ⊆ 𝐵)
293227adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → dom 𝑂 = dom 𝐾)
294283, 293eleqtrd 2833 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝐾)
295220oif 9416 . . . . . . . . . . . . . . . . . . . . . . 23 𝐾:dom 𝐾⟶(𝐺 supp ∅)
296295ffvelcdmi 7016 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ dom 𝐾 → (𝐾𝑦) ∈ (𝐺 supp ∅))
297294, 296syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ (𝐺 supp ∅))
298292, 297sseldd 3930 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ 𝐵)
2997adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑌𝐴)
300 fvex 6835 . . . . . . . . . . . . . . . . . . . . 21 (𝐺‘(𝐾𝑦)) ∈ V
301 ifexg 4522 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ (𝐺‘(𝐾𝑦)) ∈ V) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
302299, 300, 301sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
3039, 289, 298, 302fvmptd3 6952 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
304285fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
305174adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ 𝑋 ∈ (𝐺 supp ∅))
306 nelneq 2855 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝑦) ∈ (𝐺 supp ∅) ∧ ¬ 𝑋 ∈ (𝐺 supp ∅)) → ¬ (𝐾𝑦) = 𝑋)
307297, 305, 306syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ (𝐾𝑦) = 𝑋)
308307iffalsed 4483 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) = (𝐺‘(𝐾𝑦)))
309303, 304, 3083eqtr3rd 2775 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
310286, 309oveq12d 7364 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) = ((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))))
311310oveq1d 7361 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (((𝐴o (𝐾𝑦)) ·o (𝐺‘(𝐾𝑦))) +o (𝑀𝑦)) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦)))
312274, 311eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦)))
313272, 312eqeq12d 2747 . . . . . . . . . . . . . 14 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻‘suc 𝑦) = (𝑀‘suc 𝑦) ↔ (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝐻𝑦)) = (((𝐴o (𝑂𝑦)) ·o (𝐹‘(𝑂𝑦))) +o (𝑀𝑦))))
314267, 313imbitrrid 246 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
315314ex 412 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂 → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
316315a2d 29 . . . . . . . . . . 11 (𝜑 → ((suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
317266, 316syld 47 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
318317a2i 14 . . . . . . . . 9 ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
319318a1i 11 . . . . . . . 8 (𝑦 ∈ ω → ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
320238, 244, 250, 256, 258, 319finds 7826 . . . . . . 7 ( dom 𝑂 ∈ ω → (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
32120, 320mpcom 38 . . . . . 6 (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
32262, 321mpd 15 . . . . 5 (𝜑 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))
3231, 2, 3, 220, 5, 232cantnfval 9558 . . . . 5 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝑀‘dom 𝐾))
324228, 322, 3233eqtr4d 2776 . . . 4 (𝜑 → (𝐻 dom 𝑂) = ((𝐴 CNF 𝐵)‘𝐺))
325140, 324oveq12d 7364 . . 3 (𝜑 → (((𝐴o (𝑂 dom 𝑂)) ·o (𝐹‘(𝑂 dom 𝑂))) +o (𝐻 dom 𝑂)) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
32622, 325eqtrd 2766 . 2 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
32712, 15, 3263eqtrd 2770 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573   cuni 4856   class class class wbr 5089  cmpt 5170  Tr wtr 5196   E cep 5513   Se wse 5565   We wwe 5566  ccnv 5613  dom cdm 5614  cres 5616  cima 5617  Ord word 6305  Oncon0 6306  suc csuc 6308  Fun wfun 6475   Fn wfn 6476  wf 6477  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  (class class class)co 7346  cmpo 7348  ωcom 7796   supp csupp 8090  seqωcseqom 8366  1oc1o 8378   +o coa 8382   ·o comu 8383  o coe 8384   finSupp cfsupp 9245  OrdIsocoi 9395   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-cnf 9552
This theorem is referenced by:  cantnfp1  9571
  Copyright terms: Public domain W3C validator