MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmptif Structured version   Visualization version   GIF version

Theorem fsuppmptif 9308
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppmptif.f (𝜑𝐹:𝐴𝐵)
fsuppmptif.a (𝜑𝐴𝑉)
fsuppmptif.z (𝜑𝑍𝑊)
fsuppmptif.s (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppmptif (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem fsuppmptif
StepHypRef Expression
1 fvex 6839 . . . . 5 (𝐹𝑘) ∈ V
2 fsuppmptif.z . . . . . 6 (𝜑𝑍𝑊)
32adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 𝑍𝑊)
4 ifexg 4528 . . . . 5 (((𝐹𝑘) ∈ V ∧ 𝑍𝑊) → if(𝑘𝐷, (𝐹𝑘), 𝑍) ∈ V)
51, 3, 4sylancr 587 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 𝑍) ∈ V)
65fmpttd 7053 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)):𝐴⟶V)
76ffund 6660 . 2 (𝜑 → Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)))
8 fsuppmptif.s . . . 4 (𝜑𝐹 finSupp 𝑍)
98fsuppimpd 9278 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
10 fsuppmptif.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
11 ssidd 3961 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
12 fsuppmptif.a . . . . . . 7 (𝜑𝐴𝑉)
1310, 11, 12, 2suppssr 8135 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑘) = 𝑍)
1413ifeq1d 4498 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘𝐷, (𝐹𝑘), 𝑍) = if(𝑘𝐷, 𝑍, 𝑍))
15 ifid 4519 . . . . 5 if(𝑘𝐷, 𝑍, 𝑍) = 𝑍
1614, 15eqtrdi 2780 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘𝐷, (𝐹𝑘), 𝑍) = 𝑍)
1716, 12suppss2 8140 . . 3 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍))
189, 17ssfid 9170 . 2 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)
1912mptexd 7164 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∈ V)
20 isfsupp 9274 . . 3 (((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∈ V ∧ 𝑍𝑊) → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∧ ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)))
2119, 2, 20syl2anc 584 . 2 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∧ ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)))
227, 18, 21mpbir2and 713 1 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3438  cdif 3902  ifcif 4478   class class class wbr 5095  cmpt 5176  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353   supp csupp 8100  Fincfn 8879   finSupp cfsupp 9270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-supp 8101  df-1o 8395  df-en 8880  df-fin 8883  df-fsupp 9271
This theorem is referenced by:  cantnflem1d  9603  gsumzsplit  19824
  Copyright terms: Public domain W3C validator