![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmptif | Structured version Visualization version GIF version |
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptif.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fsuppmptif.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsuppmptif.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppmptif.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppmptif | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6459 | . . . . 5 ⊢ (𝐹‘𝑘) ∈ V | |
2 | fsuppmptif.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
3 | 2 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑍 ∈ 𝑊) |
4 | ifexg 4354 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ V ∧ 𝑍 ∈ 𝑊) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) | |
5 | 1, 3, 4 | sylancr 581 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) |
6 | 5 | fmpttd 6649 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)):𝐴⟶V) |
7 | 6 | ffund 6295 | . 2 ⊢ (𝜑 → Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍))) |
8 | fsuppmptif.s | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
9 | 8 | fsuppimpd 8570 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
10 | fsuppmptif.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
11 | ssidd 3843 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
12 | fsuppmptif.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | 10, 11, 12, 2 | suppssr 7608 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑘) = 𝑍) |
14 | 13 | ifeq1d 4325 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = if(𝑘 ∈ 𝐷, 𝑍, 𝑍)) |
15 | ifid 4346 | . . . . 5 ⊢ if(𝑘 ∈ 𝐷, 𝑍, 𝑍) = 𝑍 | |
16 | 14, 15 | syl6eq 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = 𝑍) |
17 | 16, 12 | suppss2 7611 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
18 | 9, 17 | ssfid 8471 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin) |
19 | 12 | mptexd 6759 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V) |
20 | isfsupp 8567 | . . 3 ⊢ (((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) | |
21 | 19, 2, 20 | syl2anc 579 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) |
22 | 7, 18, 21 | mpbir2and 703 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2107 Vcvv 3398 ∖ cdif 3789 ifcif 4307 class class class wbr 4886 ↦ cmpt 4965 Fun wfun 6129 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 supp csupp 7576 Fincfn 8241 finSupp cfsupp 8563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-supp 7577 df-er 8026 df-en 8242 df-fin 8245 df-fsupp 8564 |
This theorem is referenced by: cantnflem1d 8882 gsumzsplit 18713 |
Copyright terms: Public domain | W3C validator |