![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmptif | Structured version Visualization version GIF version |
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptif.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fsuppmptif.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsuppmptif.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppmptif.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppmptif | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . . 5 ⊢ (𝐹‘𝑘) ∈ V | |
2 | fsuppmptif.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑍 ∈ 𝑊) |
4 | ifexg 4577 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ V ∧ 𝑍 ∈ 𝑊) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) | |
5 | 1, 3, 4 | sylancr 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) |
6 | 5 | fmpttd 7116 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)):𝐴⟶V) |
7 | 6 | ffund 6721 | . 2 ⊢ (𝜑 → Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍))) |
8 | fsuppmptif.s | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
9 | 8 | fsuppimpd 9373 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
10 | fsuppmptif.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
11 | ssidd 4005 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
12 | fsuppmptif.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | 10, 11, 12, 2 | suppssr 8185 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑘) = 𝑍) |
14 | 13 | ifeq1d 4547 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = if(𝑘 ∈ 𝐷, 𝑍, 𝑍)) |
15 | ifid 4568 | . . . . 5 ⊢ if(𝑘 ∈ 𝐷, 𝑍, 𝑍) = 𝑍 | |
16 | 14, 15 | eqtrdi 2787 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = 𝑍) |
17 | 16, 12 | suppss2 8189 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
18 | 9, 17 | ssfid 9271 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin) |
19 | 12 | mptexd 7228 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V) |
20 | isfsupp 9369 | . . 3 ⊢ (((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) | |
21 | 19, 2, 20 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) |
22 | 7, 18, 21 | mpbir2and 710 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3945 ifcif 4528 class class class wbr 5148 ↦ cmpt 5231 Fun wfun 6537 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 supp csupp 8150 Fincfn 8943 finSupp cfsupp 9365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-supp 8151 df-1o 8470 df-en 8944 df-fin 8947 df-fsupp 9366 |
This theorem is referenced by: cantnflem1d 9687 gsumzsplit 19837 |
Copyright terms: Public domain | W3C validator |