Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppmptif | Structured version Visualization version GIF version |
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptif.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fsuppmptif.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsuppmptif.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppmptif.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppmptif | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6843 | . . . . 5 ⊢ (𝐹‘𝑘) ∈ V | |
2 | fsuppmptif.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
3 | 2 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑍 ∈ 𝑊) |
4 | ifexg 4527 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ V ∧ 𝑍 ∈ 𝑊) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) | |
5 | 1, 3, 4 | sylancr 588 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) |
6 | 5 | fmpttd 7050 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)):𝐴⟶V) |
7 | 6 | ffund 6660 | . 2 ⊢ (𝜑 → Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍))) |
8 | fsuppmptif.s | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
9 | 8 | fsuppimpd 9238 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
10 | fsuppmptif.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
11 | ssidd 3959 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
12 | fsuppmptif.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | 10, 11, 12, 2 | suppssr 8087 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑘) = 𝑍) |
14 | 13 | ifeq1d 4497 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = if(𝑘 ∈ 𝐷, 𝑍, 𝑍)) |
15 | ifid 4518 | . . . . 5 ⊢ if(𝑘 ∈ 𝐷, 𝑍, 𝑍) = 𝑍 | |
16 | 14, 15 | eqtrdi 2793 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = 𝑍) |
17 | 16, 12 | suppss2 8091 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
18 | 9, 17 | ssfid 9137 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin) |
19 | 12 | mptexd 7161 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V) |
20 | isfsupp 9235 | . . 3 ⊢ (((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) | |
21 | 19, 2, 20 | syl2anc 585 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) |
22 | 7, 18, 21 | mpbir2and 711 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 Vcvv 3442 ∖ cdif 3899 ifcif 4478 class class class wbr 5097 ↦ cmpt 5180 Fun wfun 6478 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 supp csupp 8052 Fincfn 8809 finSupp cfsupp 9231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-supp 8053 df-1o 8372 df-en 8810 df-fin 8813 df-fsupp 9232 |
This theorem is referenced by: cantnflem1d 9550 gsumzsplit 19623 |
Copyright terms: Public domain | W3C validator |