![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmptif | Structured version Visualization version GIF version |
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptif.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fsuppmptif.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsuppmptif.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppmptif.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Ref | Expression |
---|---|
fsuppmptif | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . . 5 ⊢ (𝐹‘𝑘) ∈ V | |
2 | fsuppmptif.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑍 ∈ 𝑊) |
4 | ifexg 4580 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ V ∧ 𝑍 ∈ 𝑊) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) | |
5 | 1, 3, 4 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) |
6 | 5 | fmpttd 7135 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)):𝐴⟶V) |
7 | 6 | ffund 6741 | . 2 ⊢ (𝜑 → Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍))) |
8 | fsuppmptif.s | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
9 | 8 | fsuppimpd 9407 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
10 | fsuppmptif.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
11 | ssidd 4019 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
12 | fsuppmptif.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | 10, 11, 12, 2 | suppssr 8219 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑘) = 𝑍) |
14 | 13 | ifeq1d 4550 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = if(𝑘 ∈ 𝐷, 𝑍, 𝑍)) |
15 | ifid 4571 | . . . . 5 ⊢ if(𝑘 ∈ 𝐷, 𝑍, 𝑍) = 𝑍 | |
16 | 14, 15 | eqtrdi 2791 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = 𝑍) |
17 | 16, 12 | suppss2 8224 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
18 | 9, 17 | ssfid 9299 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin) |
19 | 12 | mptexd 7244 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V) |
20 | isfsupp 9403 | . . 3 ⊢ (((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) | |
21 | 19, 2, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) |
22 | 7, 18, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 Fincfn 8984 finSupp cfsupp 9399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-supp 8185 df-1o 8505 df-en 8985 df-fin 8988 df-fsupp 9400 |
This theorem is referenced by: cantnflem1d 9726 gsumzsplit 19960 |
Copyright terms: Public domain | W3C validator |