| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppmptif | Structured version Visualization version GIF version | ||
| Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppmptif.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fsuppmptif.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsuppmptif.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fsuppmptif.s | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Ref | Expression |
|---|---|
| fsuppmptif | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6839 | . . . . 5 ⊢ (𝐹‘𝑘) ∈ V | |
| 2 | fsuppmptif.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑍 ∈ 𝑊) |
| 4 | ifexg 4528 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ V ∧ 𝑍 ∈ 𝑊) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) | |
| 5 | 1, 3, 4 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) ∈ V) |
| 6 | 5 | fmpttd 7053 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)):𝐴⟶V) |
| 7 | 6 | ffund 6660 | . 2 ⊢ (𝜑 → Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍))) |
| 8 | fsuppmptif.s | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 9 | 8 | fsuppimpd 9278 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 10 | fsuppmptif.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 11 | ssidd 3961 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
| 12 | fsuppmptif.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 13 | 10, 11, 12, 2 | suppssr 8135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑘) = 𝑍) |
| 14 | 13 | ifeq1d 4498 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = if(𝑘 ∈ 𝐷, 𝑍, 𝑍)) |
| 15 | ifid 4519 | . . . . 5 ⊢ if(𝑘 ∈ 𝐷, 𝑍, 𝑍) = 𝑍 | |
| 16 | 14, 15 | eqtrdi 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍) = 𝑍) |
| 17 | 16, 12 | suppss2 8140 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
| 18 | 9, 17 | ssfid 9170 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin) |
| 19 | 12 | mptexd 7164 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V) |
| 20 | isfsupp 9274 | . . 3 ⊢ (((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) | |
| 21 | 19, 2, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) ∧ ((𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) supp 𝑍) ∈ Fin))) |
| 22 | 7, 18, 21 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 supp csupp 8100 Fincfn 8879 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-supp 8101 df-1o 8395 df-en 8880 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: cantnflem1d 9603 gsumzsplit 19824 |
| Copyright terms: Public domain | W3C validator |