MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmptif Structured version   Visualization version   GIF version

Theorem fsuppmptif 9290
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppmptif.f (𝜑𝐹:𝐴𝐵)
fsuppmptif.a (𝜑𝐴𝑉)
fsuppmptif.z (𝜑𝑍𝑊)
fsuppmptif.s (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppmptif (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem fsuppmptif
StepHypRef Expression
1 fvex 6841 . . . . 5 (𝐹𝑘) ∈ V
2 fsuppmptif.z . . . . . 6 (𝜑𝑍𝑊)
32adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 𝑍𝑊)
4 ifexg 4524 . . . . 5 (((𝐹𝑘) ∈ V ∧ 𝑍𝑊) → if(𝑘𝐷, (𝐹𝑘), 𝑍) ∈ V)
51, 3, 4sylancr 587 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 𝑍) ∈ V)
65fmpttd 7054 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)):𝐴⟶V)
76ffund 6660 . 2 (𝜑 → Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)))
8 fsuppmptif.s . . . 4 (𝜑𝐹 finSupp 𝑍)
98fsuppimpd 9260 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
10 fsuppmptif.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
11 ssidd 3954 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
12 fsuppmptif.a . . . . . . 7 (𝜑𝐴𝑉)
1310, 11, 12, 2suppssr 8131 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑘) = 𝑍)
1413ifeq1d 4494 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘𝐷, (𝐹𝑘), 𝑍) = if(𝑘𝐷, 𝑍, 𝑍))
15 ifid 4515 . . . . 5 if(𝑘𝐷, 𝑍, 𝑍) = 𝑍
1614, 15eqtrdi 2784 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘𝐷, (𝐹𝑘), 𝑍) = 𝑍)
1716, 12suppss2 8136 . . 3 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍))
189, 17ssfid 9160 . 2 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)
1912mptexd 7164 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∈ V)
20 isfsupp 9256 . . 3 (((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∈ V ∧ 𝑍𝑊) → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∧ ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)))
2119, 2, 20syl2anc 584 . 2 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∧ ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)))
227, 18, 21mpbir2and 713 1 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  Vcvv 3437  cdif 3895  ifcif 4474   class class class wbr 5093  cmpt 5174  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7352   supp csupp 8096  Fincfn 8875   finSupp cfsupp 9252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-supp 8097  df-1o 8391  df-en 8876  df-fin 8879  df-fsupp 9253
This theorem is referenced by:  cantnflem1d  9585  gsumzsplit  19841
  Copyright terms: Public domain W3C validator