Step | Hyp | Ref
| Expression |
1 | | marrepfval.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | marrepfval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
3 | | marrepfval.q |
. . . 4
⊢ 𝑄 = (𝑁 matRRep 𝑅) |
4 | | marrepfval.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
5 | 1, 2, 3, 4 | marrepval 21709 |
. . 3
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
6 | 5 | 3adant3 1131 |
. 2
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)))) |
7 | | simp3l 1200 |
. . 3
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
8 | | simpl3r 1228 |
. . 3
⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑖 = 𝐼) → 𝐽 ∈ 𝑁) |
9 | 4 | fvexi 6785 |
. . . . . . . 8
⊢ 0 ∈
V |
10 | | ifexg 4514 |
. . . . . . . 8
⊢ ((𝑆 ∈ (Base‘𝑅) ∧ 0 ∈ V) → if(𝑗 = 𝐿, 𝑆, 0 ) ∈
V) |
11 | 9, 10 | mpan2 688 |
. . . . . . 7
⊢ (𝑆 ∈ (Base‘𝑅) → if(𝑗 = 𝐿, 𝑆, 0 ) ∈
V) |
12 | | ovexd 7306 |
. . . . . . 7
⊢ (𝑆 ∈ (Base‘𝑅) → (𝑖𝑀𝑗) ∈ V) |
13 | 11, 12 | ifcld 4511 |
. . . . . 6
⊢ (𝑆 ∈ (Base‘𝑅) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V) |
14 | 13 | adantl 482 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V) |
15 | 14 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V) |
16 | 15 | adantr 481 |
. . 3
⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V) |
17 | | eqeq1 2744 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑖 = 𝐾 ↔ 𝐼 = 𝐾)) |
18 | 17 | adantr 481 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖 = 𝐾 ↔ 𝐼 = 𝐾)) |
19 | | eqeq1 2744 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → (𝑗 = 𝐿 ↔ 𝐽 = 𝐿)) |
20 | 19 | ifbid 4488 |
. . . . . 6
⊢ (𝑗 = 𝐽 → if(𝑗 = 𝐿, 𝑆, 0 ) = if(𝐽 = 𝐿, 𝑆, 0 )) |
21 | 20 | adantl 482 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑗 = 𝐿, 𝑆, 0 ) = if(𝐽 = 𝐿, 𝑆, 0 )) |
22 | | oveq12 7280 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽)) |
23 | 18, 21, 22 | ifbieq12d 4493 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽))) |
24 | 23 | adantl 482 |
. . 3
⊢ ((((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽))) |
25 | 7, 8, 16, 24 | ovmpodv2 7425 |
. 2
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ((𝐾(𝑀𝑄𝑆)𝐿) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))) → (𝐼(𝐾(𝑀𝑄𝑆)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽)))) |
26 | 6, 25 | mpd 15 |
1
⊢ (((𝑀 ∈ 𝐵 ∧ 𝑆 ∈ (Base‘𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐾(𝑀𝑄𝑆)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽))) |