MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepeval Structured version   Visualization version   GIF version

Theorem marrepeval 22479
Description: An entry of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a 𝐴 = (𝑁 Mat 𝑅)
marrepfval.b 𝐵 = (Base‘𝐴)
marrepfval.q 𝑄 = (𝑁 matRRep 𝑅)
marrepfval.z 0 = (0g𝑅)
Assertion
Ref Expression
marrepeval (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑀𝑄𝑆)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽)))

Proof of Theorem marrepeval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marrepfval.b . . . 4 𝐵 = (Base‘𝐴)
3 marrepfval.q . . . 4 𝑄 = (𝑁 matRRep 𝑅)
4 marrepfval.z . . . 4 0 = (0g𝑅)
51, 2, 3, 4marrepval 22478 . . 3 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))
653adant3 1132 . 2 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐾(𝑀𝑄𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))))
7 simp3l 1202 . . 3 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
8 simpl3r 1230 . . 3 ((((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑖 = 𝐼) → 𝐽𝑁)
94fvexi 6842 . . . . . . . 8 0 ∈ V
10 ifexg 4524 . . . . . . . 8 ((𝑆 ∈ (Base‘𝑅) ∧ 0 ∈ V) → if(𝑗 = 𝐿, 𝑆, 0 ) ∈ V)
119, 10mpan2 691 . . . . . . 7 (𝑆 ∈ (Base‘𝑅) → if(𝑗 = 𝐿, 𝑆, 0 ) ∈ V)
12 ovexd 7387 . . . . . . 7 (𝑆 ∈ (Base‘𝑅) → (𝑖𝑀𝑗) ∈ V)
1311, 12ifcld 4521 . . . . . 6 (𝑆 ∈ (Base‘𝑅) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V)
1413adantl 481 . . . . 5 ((𝑀𝐵𝑆 ∈ (Base‘𝑅)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V)
15143ad2ant1 1133 . . . 4 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V)
1615adantr 480 . . 3 ((((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) ∈ V)
17 eqeq1 2737 . . . . . 6 (𝑖 = 𝐼 → (𝑖 = 𝐾𝐼 = 𝐾))
1817adantr 480 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝐾𝐼 = 𝐾))
19 eqeq1 2737 . . . . . . 7 (𝑗 = 𝐽 → (𝑗 = 𝐿𝐽 = 𝐿))
2019ifbid 4498 . . . . . 6 (𝑗 = 𝐽 → if(𝑗 = 𝐿, 𝑆, 0 ) = if(𝐽 = 𝐿, 𝑆, 0 ))
2120adantl 481 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑗 = 𝐿, 𝑆, 0 ) = if(𝐽 = 𝐿, 𝑆, 0 ))
22 oveq12 7361 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
2318, 21, 22ifbieq12d 4503 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽)))
2423adantl 481 . . 3 ((((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽)))
257, 8, 16, 24ovmpodv2 7510 . 2 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐾(𝑀𝑄𝑆)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 𝑆, 0 ), (𝑖𝑀𝑗))) → (𝐼(𝐾(𝑀𝑄𝑆)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽))))
266, 25mpd 15 1 (((𝑀𝐵𝑆 ∈ (Base‘𝑅)) ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑀𝑄𝑆)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 𝑆, 0 ), (𝐼𝑀𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4474  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  0gc0g 17345   Mat cmat 22323   matRRep cmarrep 22472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12133  df-slot 17095  df-ndx 17107  df-base 17123  df-mat 22324  df-marrep 22474
This theorem is referenced by:  submatminr1  33844
  Copyright terms: Public domain W3C validator