Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv Structured version   Visualization version   GIF version

Theorem cdleme31fv 38331
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme31.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
cdleme31.c 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
Assertion
Ref Expression
cdleme31fv (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑠,𝑧,𝑋
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑠)   𝐵(𝑧,𝑠)   𝐶(𝑧,𝑠)   𝑃(𝑧,𝑠)   𝑄(𝑧,𝑠)   𝐹(𝑥,𝑧,𝑠)   (𝑥,𝑧,𝑠)   (𝑧,𝑠)   (𝑥,𝑧,𝑠)   𝑁(𝑥,𝑧,𝑠)   𝑂(𝑥,𝑧,𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem cdleme31fv
StepHypRef Expression
1 cdleme31.c . . . 4 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
2 riotaex 7216 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))) ∈ V
31, 2eqeltri 2835 . . 3 𝐶 ∈ V
4 ifexg 4505 . . 3 ((𝐶 ∈ V ∧ 𝑋𝐵) → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
53, 4mpan 686 . 2 (𝑋𝐵 → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
6 breq1 5073 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
76notbid 317 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
87anbi2d 628 . . . 4 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
9 oveq1 7262 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑊) = (𝑋 𝑊))
109oveq2d 7271 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑠 (𝑥 𝑊)) = (𝑠 (𝑋 𝑊)))
11 id 22 . . . . . . . . . 10 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2754 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑠 (𝑥 𝑊)) = 𝑥 ↔ (𝑠 (𝑋 𝑊)) = 𝑋))
1312anbi2d 628 . . . . . . . 8 (𝑥 = 𝑋 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋)))
149oveq2d 7271 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑁 (𝑥 𝑊)) = (𝑁 (𝑋 𝑊)))
1514eqeq2d 2749 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧 = (𝑁 (𝑥 𝑊)) ↔ 𝑧 = (𝑁 (𝑋 𝑊))))
1613, 15imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1716ralbidv 3120 . . . . . 6 (𝑥 = 𝑋 → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1817riotabidv 7214 . . . . 5 (𝑥 = 𝑋 → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
19 cdleme31.o . . . . 5 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
2018, 19, 13eqtr4g 2804 . . . 4 (𝑥 = 𝑋𝑂 = 𝐶)
218, 20, 11ifbieq12d 4484 . . 3 (𝑥 = 𝑋 → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
22 cdleme31.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
2321, 22fvmptg 6855 . 2 ((𝑋𝐵 ∧ if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V) → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
245, 23mpdan 683 1 (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  crio 7211  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258
This theorem is referenced by:  cdleme31fv1  38332
  Copyright terms: Public domain W3C validator