Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv Structured version   Visualization version   GIF version

Theorem cdleme31fv 40355
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme31.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
cdleme31.c 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
Assertion
Ref Expression
cdleme31fv (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑠,𝑧,𝑋
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑠)   𝐵(𝑧,𝑠)   𝐶(𝑧,𝑠)   𝑃(𝑧,𝑠)   𝑄(𝑧,𝑠)   𝐹(𝑥,𝑧,𝑠)   (𝑥,𝑧,𝑠)   (𝑧,𝑠)   (𝑥,𝑧,𝑠)   𝑁(𝑥,𝑧,𝑠)   𝑂(𝑥,𝑧,𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem cdleme31fv
StepHypRef Expression
1 cdleme31.c . . . 4 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
2 riotaex 7364 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))) ∈ V
31, 2eqeltri 2830 . . 3 𝐶 ∈ V
4 ifexg 4550 . . 3 ((𝐶 ∈ V ∧ 𝑋𝐵) → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
53, 4mpan 690 . 2 (𝑋𝐵 → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
6 breq1 5122 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
76notbid 318 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
87anbi2d 630 . . . 4 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
9 oveq1 7410 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑊) = (𝑋 𝑊))
109oveq2d 7419 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑠 (𝑥 𝑊)) = (𝑠 (𝑋 𝑊)))
11 id 22 . . . . . . . . . 10 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2751 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑠 (𝑥 𝑊)) = 𝑥 ↔ (𝑠 (𝑋 𝑊)) = 𝑋))
1312anbi2d 630 . . . . . . . 8 (𝑥 = 𝑋 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋)))
149oveq2d 7419 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑁 (𝑥 𝑊)) = (𝑁 (𝑋 𝑊)))
1514eqeq2d 2746 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧 = (𝑁 (𝑥 𝑊)) ↔ 𝑧 = (𝑁 (𝑋 𝑊))))
1613, 15imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1716ralbidv 3163 . . . . . 6 (𝑥 = 𝑋 → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1817riotabidv 7362 . . . . 5 (𝑥 = 𝑋 → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
19 cdleme31.o . . . . 5 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
2018, 19, 13eqtr4g 2795 . . . 4 (𝑥 = 𝑋𝑂 = 𝐶)
218, 20, 11ifbieq12d 4529 . . 3 (𝑥 = 𝑋 → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
22 cdleme31.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
2321, 22fvmptg 6983 . 2 ((𝑋𝐵 ∧ if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V) → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
245, 23mpdan 687 1 (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  ifcif 4500   class class class wbr 5119  cmpt 5201  cfv 6530  crio 7359  (class class class)co 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-riota 7360  df-ov 7406
This theorem is referenced by:  cdleme31fv1  40356
  Copyright terms: Public domain W3C validator