Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv Structured version   Visualization version   GIF version

Theorem cdleme31fv 40391
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme31.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
cdleme31.c 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
Assertion
Ref Expression
cdleme31fv (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑠,𝑧,𝑋
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑠)   𝐵(𝑧,𝑠)   𝐶(𝑧,𝑠)   𝑃(𝑧,𝑠)   𝑄(𝑧,𝑠)   𝐹(𝑥,𝑧,𝑠)   (𝑥,𝑧,𝑠)   (𝑧,𝑠)   (𝑥,𝑧,𝑠)   𝑁(𝑥,𝑧,𝑠)   𝑂(𝑥,𝑧,𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem cdleme31fv
StepHypRef Expression
1 cdleme31.c . . . 4 𝐶 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
2 riotaex 7351 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))) ∈ V
31, 2eqeltri 2825 . . 3 𝐶 ∈ V
4 ifexg 4541 . . 3 ((𝐶 ∈ V ∧ 𝑋𝐵) → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
53, 4mpan 690 . 2 (𝑋𝐵 → if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V)
6 breq1 5113 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
76notbid 318 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
87anbi2d 630 . . . 4 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
9 oveq1 7397 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 𝑊) = (𝑋 𝑊))
109oveq2d 7406 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑠 (𝑥 𝑊)) = (𝑠 (𝑋 𝑊)))
11 id 22 . . . . . . . . . 10 (𝑥 = 𝑋𝑥 = 𝑋)
1210, 11eqeq12d 2746 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑠 (𝑥 𝑊)) = 𝑥 ↔ (𝑠 (𝑋 𝑊)) = 𝑋))
1312anbi2d 630 . . . . . . . 8 (𝑥 = 𝑋 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋)))
149oveq2d 7406 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑁 (𝑥 𝑊)) = (𝑁 (𝑋 𝑊)))
1514eqeq2d 2741 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧 = (𝑁 (𝑥 𝑊)) ↔ 𝑧 = (𝑁 (𝑋 𝑊))))
1613, 15imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1716ralbidv 3157 . . . . . 6 (𝑥 = 𝑋 → (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))) ↔ ∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
1817riotabidv 7349 . . . . 5 (𝑥 = 𝑋 → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
19 cdleme31.o . . . . 5 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
2018, 19, 13eqtr4g 2790 . . . 4 (𝑥 = 𝑋𝑂 = 𝐶)
218, 20, 11ifbieq12d 4520 . . 3 (𝑥 = 𝑋 → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
22 cdleme31.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
2321, 22fvmptg 6969 . 2 ((𝑋𝐵 ∧ if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋) ∈ V) → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
245, 23mpdan 687 1 (𝑋𝐵 → (𝐹𝑋) = if((𝑃𝑄 ∧ ¬ 𝑋 𝑊), 𝐶, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393
This theorem is referenced by:  cdleme31fv1  40392
  Copyright terms: Public domain W3C validator